1772
H. Iwasaki et al. / Tetrahedron Letters 52 (2011) 1770–1772
8. (a) Citterio, A.; Sebastiano, R.; Maronati, A.; Santi, R.; Bergamini, F. J. Chem. Soc.,
Chem. Commun. 1994, 1517–1518; (b) Boivin, J.; Yousfi, M.; Zard, S. Z.
Tetrahedron Lett. 1997, 38, 5985–5988.
9. (a) Hey, D. H.; Jones, G. H.; Perkins, M. J. J. Chem. Soc. C 1971, 116–122; (b)
Ishibashi, H.; Nakamura, N.; Ito, K.; Kitayama, S.; Ikeda, M. Heterocycles 1990,
31, 1781–1784; (c) Yang, C.-C.; Chang, H.-T.; Fang, J.-M. J. Org. Chem. 1993, 58,
3100–3105; (d) Escolano, C.; Jones, K. Tetrahedron Lett. 2000, 41, 8951–8955;
(e) Hilton, S. T.; Ho, T. C. T.; Pljevaljcic, G.; Jones, K. Org. Lett. 2000, 2, 2639–
2641.
10. (a) Crich, D.; Hwang, J.-T. J. Org. Chem. 1998, 63, 2765–2770; (b) Harrowven, D.
C.; Nunn, M. I. T.; Newman, N. A.; Fenwick, D. R. Tetrahedron Lett. 2001, 42,
961–964; For a recent review, see: (c) Studer, A.; Bossart, M. Tetrahedron 2001,
57, 9649–9667.
11. Ohno, H.; Okumura, M.; Maeda, S.; Iwasaki, H.; Wakayama, R.; Tanaka, T. J. Org.
Chem. 2003, 68, 7722–7732.
spirocyclization is useful for direct synthesis of tetracyclic spirocy-
cles 21a/b using cyclohexanone derivative 17 as a substrate,
although the yield is relatively low (20%, entry 4).
In conclusion, we have developed a tandem spirocyclization
method mediated by SmI2 in the presence of HMPA, which
proceeded via ketyl radical attack on the aromatic ring, single elec-
tron transfer, and nucleophilic attack of the resulting dienyl anion
to the ester group. This reaction can provide a stereoselective syn-
thetic route to dispiro[4.2.4.2]tetradecadienes and dispiro[4.2.5.2]
tetradecadienes.
References and notes
12. The reaction of benzoate derivatives led to decomposition of the starting
materials, without producing any detectable amounts of the desired tandem
spirocyclic product. This is presumably due to the lability of the phenyl ester
moiety under the reductive reaction conditions.
1. Sannigrahi, M. Tetrahedron 1999, 55, 9007–9071.
2. (a) Semmelhack, M. F.; Yamashita, A. J. Am. Chem. Soc. 1980, 102, 5924–5926;
(b) Ashimori, A.; Overman, L. E. J. Org. Chem. 1992, 57, 4571–4572; (c) Pegge, F.
C.; Coniglio, J. J.; Palvit, R. J. Am. Chem. Soc. 2006, 128, 3498–3499; (d) Binder, J.
T.; Crone, B.; Kirsch, S. F.; Liébert, C.; Menz, H. Eur. J. Org. Chem. 2007, 1636–
1647.
3. (a) Fujioka, H.; Kitagaki, S.; Imai, R.; Kondo, M.; Okamoto, S.; Yoshida, Y.; Akai,
S.; Kita, Y. Tetrahedron Lett. 1995, 36, 3219–3222; (b) Fukuyama, T.; Liu, G. Pure
Appl. Chem. 1997, 69, 501–505.
4. (a) Marx, J. N.; Norman, L. R. J. Org. Chem. 1975, 40, 1602–1606; (b)
Oppolzer, W.; Zutterman, F.; Bättig, K. Helv. Chim. Acta 1983, 66, 522–
533; (c) Wu, K.-L.; Wilkinson, S.; Reich, N. O.; Pettus, J. R. R. Org. Lett.
2007, 9, 5537–5540.
5. (a) Rao, A. V. R.; Rao, B. V.; Reddy, D. R.; Singh, A. K. J. Chem. Soc., Chem. Commun.
1989, 400–401; (b) Rao, A. V. R.; Singh, A. K.; Reddy, K. M.; Ravikumar, K. J.
Chem. Soc., Perkin Trans. 1 1993, 3171–3175; (c) Back, T. G.; Gladstone, P. L.
Synlett 1993, 699–700; (d) Kittaka, A.; Asakura, T.; Kuze, T.; Tanaka, H.;
Yamada, N.; Nakamura, K. T.; Miyasaka, T. J. Org. Chem. 1999, 64, 7081–7093;
(e) Mjumdar, K. C.; Alam, S. Org. Lett. 2006, 8, 4059–4062; (f) Li, F.; Castle, S. L.
Org. Lett. 2007, 9, 4033–4036.
13. General procedure for samarium(II)-mediated tandem spirocyclization:
preparation of 10 as an example.
A mixture of samarium (168 mg,
1.12 mmol) and 1,2-diiodoethane (242 mg, 5.86 mmol) in THF (8.5 mL) was
stirred for 1.5 h. After cooling to 0 °C, HMPA (0.51 mL, 3.09 mmol) was added
to the mixture, and stirring was continued for 20 min at that temperature.
After cooling to ꢀ78 °C, a solution of the amide 9a (50 mg, 0.17 mmol) in THF
(1.5 mL) was added dropwise to the mixture for 30 min, and the mixture was
stirred for 20 min at 0 °C. After the mixture was exposed to air, EtOAc was
added to the mixture. The mixture was washed with saturated NaHCO3 and
brine, dried over MgSO4, and concentrated under reduced pressure. The
residue was purified by column chromatography over silica gel with n-hexane-
EtOAc (1:4) to give spirocycle 10 (14.9 mg, 33% yield).
Compound 10: colorless solid; IR (KBr) cmꢀ1: 3461 (OH), 1774 (C@O), 1678
[C(O)N]; 1H NMR (300 MHz, CDCl3) d: 1.25 (s, 3H, CMe), 1.75–2.05 (m, 6H,
3 ꢁ CH2), 3.11 (s, 3H, NMe), 4.00 (s, 2H, NCH2), 5.46 (dd, J = 9.9, 2.1 Hz, 1H,
C@CH), 5.52 (dd, J = 9.9, 2.1 Hz, 1H, C@CH), 5.95 (dd, J = 9.9, 1.8 Hz, 1H, C@CH),
6.15 (dd, J = 9.9, 1.8 Hz, 1H, C@CH); 13C NMR (75 MHz, CDCl3) d: 19.5, 25.3,
29.8, 38.0, 38.7, 51.5, 57.1, 57.2, 82.5, 118.9, 119.0, 135.6, 136.2, 172.0, 205.8;
MS (FAB) m/z (%): 262 (MH+, 49), 154 (100); HRMS (FAB) calcd for C15H20NO3
(MH+): 262.1443; found: 262.1448. Determination of the stereochemistry of
the products is currently in progress.
6. (a) Clive, D. L.; Angoh, A. G.; Bennett, S. M. J. Org. Chem. 1987, 52, 1339–1342;
(b) Sha, C.-K.; Ho, W.-Y. Chem. Commun. 1998, 2709–2710; (c) Srikrishna, A.;
Nagaraju, S.; Venkateswarlu, S.; Hiremath, U. S.; Reddy, T. J.; Venugopalan, P. J.
Chem. Soc., Perkin Trans.
1 1999, 2069–2076; (d) Inui, M.; Nakazaki, A.;
14. (a) Hasegawa, E.; Curran, D. P. Tetrahedron Lett. 1993, 34, 1717–1720; (b)
Shabangi, M.; Flowers, R. A. II Tetrahedron Lett. 1997, 38, 1137–1140; (c) Prasad,
E.; Flowers, R. A. II J. Am. Chem. Soc. 2002, 124, 6895–6899.
Kobayashi, S. Org. Lett. 2007, 9, 469–472.
7. (a) Harling, J. D.; Mothewell, W. B. J. Chem. Soc., Chem. Commun. 1988, 1380–
1382; (b) Cossy, J.; Poitevin, C.; Pardo, D. G. Synlett 1998, 251–252; (c) Sulsky,
R.; Gougoutas, J. Z.; DiMarco, J.; Biller, S. A. J. Org. Chem. 1999, 64, 5504–5510;
(d) Robertson, J.; Lam, H. W.; Abazi, S.; Roseblade, S.; Lush, R. K. Tetrahedron
2000, 56, 8959–8965; (e) Stevens, C. V.; Meenen, E. V.; Masschelein, K. G. R.;
Eeckhout, Y.; Hooghe, W.; D0hondt, B.; Nemykin, V. N.; Zhdankin, V. V.
Tetrahedron Lett. 2007, 48, 7108–7111.
15. Honda, T.; Ishikawa, F. Chem. Commun. 1999, 1065–1066.
16. Substrates in Table 3 have more steric hindered substituent such as ethyl,
benzyl, isopropyl, and cyclohexyl group compared with methyl group of
substrate 12a, which may be the reason why stereoisomeric mixtures were
obtained in Table 3. In order to clarify this reason, the investigation is in
progress.