196
D. Kalita et al. / Journal of Molecular Structure 990 (2011) 183–196
Table 8
bond of the acids; this is in accordance with earlier studies in re-
lated systems [23].
Hydrogen bond parameters of Vb.
D–HÁ Á ÁA
dD–H (Å)
dHÁ Á ÁA (Å)
dDÁ Á ÁA (Å)
<D–HÁ Á ÁA(0)
Supplementary material
N(2)–H(2A)Á Á ÁO(4) [i]
O(4)–H(4A)Á Á ÁN(1) [ii]
0.86
0.82
2.22
1.84
3.052(6)
2.651(5)
163
171
The CIF of compounds are deposited to Cambridge Crystallo-
graphic Database and has the CCDC Nos. 790477-790482,
781136-781137.
i = x, 3/2 À y, À1/2 + z; ii = x, 3/2 À y, 1/2 + z.
The salt Va crystallises in the monoclinic space group P2(1)/n.
The protonated quinoline nitrogen atom forms a hydrogen bond
with the oxygen atom of maleic acid anion (N1–H1NÁÁÁO4). The
maleic acid anion is further involved in various types of weak
interactions (Fig. 16a) such as C–HÁÁÁO interaction (C2–H2ÁÁÁO5),
and hydrogen bonding interaction (N2–H2NÁÁÁO4). The hydrogen
bond parameters are tabulated in Table 7. In the structure of Va
it is observed that the orientation of the two aromatic rings
changes on inclusion of the guest molecule and the dihedral angle
between the two planes containing the rings is found to be 18.5°
(Fig. 16c). This change in orientation is favoured by the presence
Acknowledgements
The authors thank Department of Science and Technology New-
Delhi, India for financial support. The author D.K. thanks Council of
Scientific and Industrial Research, New Delhi, India for a Senior Re-
search fellowship.
References
[1] J. Mao, H. Yuan, Y. Wang, B. Wan, M. Pieroni, Q. Huang, R.B. van Breemen, A.P.
Kozikowski, S.G. Franzblau, J. Med. Chem. 52 (2009) 6966.
[2] P.R. Verhoest, D.S. Chapin, M. Corman, K. Fonseca, J.F. Harms, X. Hou, E.S. Marr,
F.S. Menniti, F. Nelson, R. O’Connor, J. Pandit, C.P. LaFrance, A.W. Schmidt, C.J.
Schmidt, J.A. Suiciak, S. Liras, J. Med. Chem. 52 (2009) 5188.
[3] G.X. Li, Z.Q. Liu, X.Y. Luo, Eur. J. Med. Chem. 45 (2010) 1821.
[4] H. Zeng, R. Cao, H. Zhang, Chem. Biol. Drug Des. 74 (2009) 596.
[5] E. Milner, W. McCalmont, J. Bhonsle, D. Caridha, D. Carroll, S. Gardner, L.
Gerena, M. Gettayacamin, C. Lanteri, T. Luong, V. Melendez, J. Moon, N. Roncal,
J. Sousa, A. Tungtaeng, P. Wipf, G. Dow, Bioorg. Med. Chem. Lett. 20 (2010)
1347.
[6] I. Deb, P. Paira, A. Hazra, S. Banerjee, P.K. Dutta, N.B. Mondal, S. Das, Bioorg.
Med. Chem. 17 (2009) 5782.
[7] M. Albrecht, Triyanti, S. Schiffers, O. Osetska, G. Raabe, T. Wieland, L. Russo,
Kari Rissanen, Eur. J. Org. Chem. (2007) 2850.
[8] S.F. Alshahateet, R. Bishop, D.C. Craig, F. Kooli, M.L. Scudder, CrystEngComm 10
(2008) 297.
[9] R.F. Semeniuc, T.J. Reamer, M.D. Smith, New J. Chem. 34 (2010) 439.
[10] A. Karmakar, R.J. Sarma, J.B. Baruah, CrystEngComm 9 (2007) 379.
[11] Y. Liu, K. Chen, D.S. Guo, Q. Li, H.B. Song, Cryst. Growth Des. 7 (2007) 2601.
[12] C.R. Bondy, P.A. Gale, S.J. Loeb, J. Am. Chem. Soc. 126 (2004) 5030.
[13] M.H. Filby, J.W. Steed, Coord. Chem. Rev. 250 (2006) 3200.
[14] A. Karmakar, J.B. Baruah, Supramol. Chem. 20 (2008) 667.
[15] A. Karmakar, R.J. Sarma, J.B. Baruah, CrystEngComm 9 (2007) 378.
[16] I. Tabushi, Y. Kuroda, T. Mizutani, J. Am. Chem. Soc. 108 (1986) 4514.
[17] A. Galan, D. Andreu, A.M. Echavarren, P. Prados, J. de Mendoza, J. Am. Chem.
Soc. 114 (1992) 1512.
[18] Y. Kuroda, Y. Kato, T. Higashioji, J. Hasegawa, S. Kawanami, M. Takahashi, N.
Shiraishi, K. Tanabe, H. Ogoshi, J. Am. Chem. Soc. 117 (1995) 10950.
[19] A. Metzger, K. Gloe, H. Stephan, F.P. Schmidtchen, J. Org. Chem. 61 (1996)
2051.
[20] G. Arena, A. Casnati, A. Contino, A. Magr, F. Sansone, D. Sciotto, R. Ungaro, Org.
Biomol. Chem. 4 (2006) 243.
[21] I. Nicolas, S. Chevance, P.L. Maux, G. Simonneaux, Tetrahedron Asymmetry 21
(2010) 1788.
[22] J.W. Steed, J.L. Atwood (Eds.), Supramolecular Chemistry, John Wiley, New-
York, 2000.
[23] D. Kalita, J.B. Baruah, CrystEngComm 12 (2010) 1562.
[24] J.C.S. da Costa, K.C. Pais, E.L. Fernandes, P.S.M. de Oliveira, J.S. Mendonça,
M.V.N. de Souza, M.A. Peralta, T.R.A. Vasconcelos, ARKIVOC (2006) 128.
[25] D. Kalita, J.B. Baruah, J. Mol. Struct. 969 (2010) 75.
[26] S.A. de Silva, A. Zavaleta, D.E. Baron, O. Allam, E.V. Isidor, N. Kasbimura, J.M.
Percarpio, Tetrahedron Lett. 38 (1997) 2237.
the ethylene spacer that involved in a C–HÁÁÁ
p interaction with
the maleic acid anion (C12–H12ÁÁÁC22).
The receptor V crystallises with fumaric acid leading to a 1:2 co-
crystal (Vb) where one molecule of fumaric acid is held between
two molecules of receptor V (Fig. 15a). The co-crystal Vb crystallis-
es in monoclinic space group P2(1)/c, the fumaric acid molecule
lies on an inversion centre with only half of the molecule contained
in the crystallographic asymmetric unit (Fig. 17b). The fumaric acid
molecule is held by intermolecular hydrogen bonding with recep-
tor V (O4–H4AÁÁÁN1 and N2–H2NÁÁÁO4) as shown in Fig. 17a. The
hydrogen bond parameters are tabulated in Table 8. From the Table
8 it is observed that the fumaric acid molecule forms a much stron-
ger hydrogen bond with the quinoline nitrogen (N1) in comparison
with the amide nitrogen (N2). In this case also it is found that the
geometry of the two aromatic ring changes with the inclusion of
the guest molecule, the dihedral angle between the two planes
containing the rings is found to be 25.4° (Fig. 17c).
4. Conclusions
The non-planar geometry of the quinoline containing receptors,
facilitates binding to anions; thereby enhances the interactions of
such receptors with acids. The high affinity of N-(quinolin-8-yl)-
2-(quinolin-8-yloxy)propanamide for amino acids is due to such
effect. Poor affinity of N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acet-
amide towards binding with amino acids, is related to the higher
flexibility on the orientation of the quinoline ring. Based on the
results of preferential binding of amino acid over hydroxy acids
by receptor VI it may be stated that the overall preorganised struc-
ture of this receptor to have weak interactions with the corre-
sponding anion of acid plays an important role in recognition of
different acids. The structure of the self assemblies in the cases
of fumaric acid and maleic acid with the amide functionalized
quinoline receptors are guided by the geometry around the double
[27] S.Y. Liu, K.Y. Law, Y.B. Hea, W.H. Chan, Tetrahedron Lett. 47 (2006) 7857.
[28] A. Filippi, F. Gasparrini, M. Pierini, M. Speranza, C. Villani, J. Am. Chem. Soc. 127
(2005) 11912.
[29] S.O. Kang, R.A. Begum, K.B. James, Angew. Chem. Int. Ed. 45 (2006) 7882.