2 (a) C. V. McLaughlin, L. M. Hayden, B. Polishak, S. Huang, J. Luo,
T.-D. Kim and A. K.-Y. Jen, Appl. Phys. Lett., 2008, 92, 151107; (b)
X. Zheng, A. Sinyukov and L. M. Hayden, Appl. Phys. Lett., 2005, 87,
081115; (c) F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinsek,
J ¼ 12.6 Hz, CH), 3.78 (2H, m, CH2), 3.52–3.44 (4H, m, CH2),
3.16–3.04 (2H, m, CH), 2.83–2.73 (1H, m, CH2), 1.76 (1H, d, J ¼
9.0 Hz, CH2), 1.59–1.52 (4H, m, CH3), 1.19 (3H, t, J ¼ 6.9 Hz,
CH3), 0.88 (9H, s, CH3), 0.82 (1H, s, CH3), 0.74 (1H, s, CH3),
0.03 (6H, s, CH3). 13C NMR (CDCl3, 125 MHz, ppm): 176.41,
168.60, 164.51, 161.73, 149.90, 146.65, 146.46, 145.89, 138.06,
137.94, 137.59, 131.22, 130.36, 130.33, 129.65, 126.96, 126.73,
126.04 125.49, 125.39, 124.05, 123.04, 119.10, 114.85, 112.09,
111.67, 60.79, 52.60, 51.12, 47.00, 45.92, 44.89, 39.28, 27.15,
26.96, 26.04, 21.96, 21.88, 21.79, 18.42, 12.38, ꢀ5.23. HRMS
(ESI) (M+, C45H49F3N4O2Si): calcd: 762.3577; found:
762.3571%.
€
A. Schneider and P. Gunter, Opt. Express, 2008, 16, 16496.
3 (a) T. W. Baehr-Jones and M. J. Hochberg, J. Phys. Chem. C, 2008,
112, 8085; (b) T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan,
J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. K.-Y. Jen,
M. Hochberg and A. Scherer, Appl. Phys. Lett., 2008, 92,
163303.
4 (a) Y. Enami, C. T. DeRose, D. Mathine, C. Loychik, C. Greenlee,
R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen and
N. Peyghambarian, Nat. Photonics, 2007, 1, 183; (b) Y. Enami,
D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen
and N. Peyghambarian, Appl. Phys. Lett., 2007, 91, 093505.
5 (a) H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. Dalton
and A. Chen, IEEE Sens. J., 2007, 7, 515; (b) B. A. Block,
T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang,
B. M. Polishak, S. Huang, J. Luo and A. K.-Y. Jen, Opt. Express,
2008, 16, 18326; (c) S.-K. Kim, Y.-C. Hung, B.-J. Seo, K. Geary,
W. Yuan, B. Bortnik, H. R. Fetterman, C. Wang, W. H. Steier and
C. Zhang, Appl. Phys. Lett., 2005, 87, 061112.
Compound 1c. The procedure for chromophore 1b was fol-
lowed to prepare 1c from compound 5c and acceptor 6 as dark
solids (yield: 45%). Almost only E-isomer was obtained. 1H
NMR (CDCl3, 300 MHz, ppm): 8.01 (1H, b, CH), 7.50 (5H, s,
Ar-H), 7.42 (2H, d, J ¼ 9.0 Hz, Ar-H), 7.33 (1H, d, J ¼ 16.2 Hz,
CH), 6.69 (2H, d, J ¼ 9.0 Hz, Ar-H), 6.62 (1H, d, J ¼ 16.2 Hz,
CH), 6.57 (1H, s, CH), 6.37 (1H, d, J ¼ 12.9 Hz, CH), 6.16 (1H,
d, J ¼ 14.4 Hz, CH), 3.79 (2H, t, J ¼ 6.0 Hz, CH2), 3.54–3.46
(4H, m, CH2), 2.80–2.75 (2H, m, CH2), 1.30 (6H, s, CH3), 1.21
6 (a) P. A. Sullivan and L. R. Dalton, Acc. Chem. Res., 2010, 43, 10; (b)
J. Luo, X.-H. Zhou and A. K.-Y. Jen, J. Mater. Chem., 2009, 19,
7410; (c) R. U. A. Khan, O.-P. Kwon, A. Tapponnier,
€
A. N. Rashid and P. Gunter, Adv. Funct. Mater., 2006, 16, 180; (d)
J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S.-
H. Jang, L. R. Dalton and A. K.-Y. Jen, J. Phys. Chem. B, 2004,
108, 8523.
(3H, t, J ¼ 6.9 Hz, CH3), 0.89 (9H, s, CH3), 0.03 (6H, s, CH3). 13
C
7 (a) D. Frattarelli, M. Schiavo, A. Facchetti, M. A. Ratner and
T. J. Marks, J. Am. Chem. Soc., 2009, 131, 12595; (b) H. Kang,
A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo,
C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho,
E. C. Brown, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc.,
2007, 129, 3267; (c) A. Facchetti, E. Annoni, L. Beverina,
M. Morone, P. Zhu, T. Marks and G. Pagani, Nat. Mater., 2004, 3,
910.
NMR (CDCl3, 125 MHz, ppm): 176.62, 173.15, 150.75, 148.74,
145.3, 142.94, 131.10, 130.95, 129.57, 127.73, 126.79, 123.53,
121.54, 121.30, 115.92, 113.12, 112.67, 112.20, 112.13, 60.77,
52.65, 46.04, 28.27, 26.03, 25.82, 18.41, 12.36, ꢀ5.23. HRMS
(ESI) (M+, C43H47F3N4O2Si): calcd: 736.3420; found:
736.3415%.
8 (a) J. A. Davies, A. Elangovan, P. A. Sullivan, B. C. Olbricht,
D. H. Bale, T. R. Ewy, C. M. Isborn, B. E. Eichinger,
B. H. Robinson, P. J. Reid, X. Li and L. R. Dalton, J. Am. Chem.
Soc., 2008, 130, 10565; (b) P. A. Sullivan, H. Rommel, Y. Liao,
B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang,
J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid,
A. Chen, A. K.-Y. Jen, B. H. Robinson and L. R. Dalton, J. Am.
Chem. Soc., 2007, 129, 7523.
9 (a) T.-D. Kim, J. Luo, Y.-J. Cheng, Z. Shi, S. Hau, S.-H. Jang, X.-
H. Zhou, Y. Tian, B. Polishak, S. Huang, H. Ma, L. R. Dalton and
A. K.-Y. Jen, J. Phys. Chem. C, 2008, 122, 8091; (b) T.-D. Kim, J.-
W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict,
L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman
and A. K.-Y. Jen, J. Am. Chem. Soc., 2007, 129, 488; (c) T.-
D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker,
S.-H. Jang, J.-W. Kang and A. K.-Y. Jen, Adv. Mater., 2006, 18, 3038.
10 (a) A. M. R. Beaudin, N. Song, Y. Bai, L. Men, J. P. Gao,
Z. Y. Wang, M. Szablewski, G. Cross, W. Wenseleers, J. Campo
and E. Goovaerts, Chem. Mater., 2006, 18, 1079; (b) Y. Bai,
N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu and Z. Y. Wang, J.
Am. Chem. Soc., 2005, 127, 2060.
11 (a) Y.-J. Cheng, J. Luo, S. Huang, X. H. Zhou, Z. Shi, T.-D. Kim,
D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang,
L. R. Dalton, P. J. Reid, W. H. Steier and A. K.-Y. Jen, Chem.
Mater., 2008, 20, 5047; (b) J. Luo, S. Huang, Y.-J. Cheng, T.-
D. Kim, Z. Shi, X. H. Zhou and A. K.-Y. Jen, Org. Lett., 2007, 9,
4471; (c) Y.-J. Cheng, J. Luo, S. Hau, D. H. Bale, T.-D. Kim,
Z. Shi, D. B. Lao, N. M. Tucker, Y. Tian, P. J. Ried, L. R. Dalton
and A. K.-Y. Jen, Chem. Mater., 2007, 19, 1154.
12 (a) X.-H. Zhou, J. Luo, S. Huang, T.-D. Kim, Z. Shi, Y.-J. Cheng, S.-
H. Jang, D. B. Knorr, R. M. Overney and A. K.-Y. Jen, Adv. Mater.,
2009, 21, 1976; (b) D. B. Knorr, X.-H. Zhou, Z. Shi, J. Luo, S.-
H. Jang, A. K.-Y. Jen and R. M. Overney, J. Phys. Chem. B, 2009,
113, 14180.
Acknowledgements
This work was supported by the National Science Foundation
(NSFSTC program under Agreement Number DMR-0120967),
the Defense Advanced Research Projects Agency (DARPA)
MORPH program, the Office of Naval Research (ONR), and the
World Class University (WCU) program through the National
Research Foundation of Korea under the Ministry of Education,
Science and Technology (R31-10035). Alex K.-Y. Jen thanks the
Boeing-Johnson Foundation for its support. Additionally the
authors thank B. H. Robinson, and B. E. Eichinger as well as
their relevant funding agencies [Air Force Office of Scientific
Research (AFOSR) and NSF (DMR-0092380)] for providing the
guidance and framework necessary to perform calculations.
References
1 (a) M. J. Cho, D. H. Choi, P. A. Sullivan, A. J. P. Akelaitis and
L. R. Dalton, Prog. Polym. Sci., 2008, 33, 1013; (b) S. R. Marder,
Chem. Commun., 2006, 131; (c) F. Kajzar, K.-S. Lee and A. K.-
Y. Jen, Adv. Polym. Sci., 2003, 161, 1; (d) M. Lee, H. E. Katz,
C. D. Erben, M. Gill, P. Gopalan, J. D. Heber and D. J. McGee,
Science, 2002, 298, 1401; (e) Y. Shi, C. Zhang, H. Zhang,
J. H. Bechtel, L. R. Dalton, B. H. Robinson and W. H. Steier,
Science, 2000, 288, 119–122; (f) L. R. Dalton, W. H. Steier,
B. H. Robinson, C. Zhang, A. Ren, S. Garner, A. Chen,
T. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan,
C. Kincaid, J. Amend and A. K.-Y. Jen, J. Mater. Chem., 1999, 9,
1905; (g) S. R. Marder, B. Kippelen, A. K.-Y. Jen and
N. Peyghambarian, Nature, 1997, 388, 845; (h) T. Verbiest,
S. Houbrechts, M. Kauranen, K. Clays and A. Persoons, J. Mater.
Chem., 1997, 7, 2175; (i) D. R. Kanis, M. A. Ratner and
T. J. Marks, Chem. Rev., 1994, 94, 195.
13 (a) S. R. Marder, D. N. Beratan and L.-T. Cheng, Science, 1991, 252,
103; (b) G. Bourhill, J. L. Bredas, L.-T. Cheng, S. R. Marder,
F. Meyers, J. W. Perry and B. G. Tiemann, J. Am. Chem. Soc.,
1994, 116, 2619.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 4437–4444 | 4443