with complementary RNA were considerably destabilized
compared to the control 20,50-sequence (DTm E ꢀ1.1 to
ꢀ7.7 1C). In contrast, the oligomers containing the S-type
locked monomers (DNA2, DNA3) effected modest stabilization
of the complex with RNA (DTm E +0.5 to +2.3 1C).
Oligomers bearing locked S-type units thus formed more
stable complexes with RNA compared to the unmodified
complex. Apparently, the S-type locked conformation at the
modified site would be in compliance with the predicted S-type
conformations of the isoDNA strand in the isoDNA : RNA
duplex and therefore could stabilize the duplex. The imparted
stability due to pre-organization in this geometry was not
found to be as large as in the case of 30,50-LNA : RNA
duplexes (DTm E + 4 1C/mod).13a This could be because
the S-type conformations would bring the nucleobases in
pseudoequatorial position in which, the stacking and hydro-
gen bonding interactions are not as strong as in the N-type
sugar geometry,10 when the nucleobase assumes pseudoaxial
orientation, as in LNA : RNA duplexes. The significant
destabilization of the isoDNA : RNA complex by locking the
sugar conformation in N-type geometry was also in compli-
ance with the predicted geometry of the isoDNA : RNA
duplex. The 30-deoxy-30-xylofluoro uridine, found to be
in E 100% N-type geometry, caused destabilization of the
duplex (Table 1, DTm E ꢀ4.8 to ꢀ6.0 1C) but the oligomer
with the 30-deoxy-30-ribofluoro uridine modifications in which
the sugar geometry is S-type, showed similar melting behaviour
as unmodified duplex (DTm E + 1.0 1C). These results
indicate that N-type to S-type conformational change that
the 30-deoxyuridine presumably undergoes while in duplex
state is to some extent resisted by 30-deoxy-30-xylofluoro
riboside due to the favourable O40-C40-C30-F30 gauche effect
in N-type sugar geometry, considering comparable steric
interactions between fluorine and hydrogen atoms15 (Fig. 3).
For the 30-deoxy-30-ribofluoro derivative the preferred
sugar pucker would be S-type again due to dominating
O40-C40-C30-F30 gauche effect. The frozen conformation could
not increase the stability of the duplexes when present in the
oligomer probably due to its inability to further strengthen
the stacking and hydrogen bonding interactions in S-type
geometry of the sugar when the base orientation becomes
pseudoequatorial.
Stabilization of isoDNA : RNA duplexes by S-locked/frozen
monomer units and destabilization of the same by N-locked/
frozen monomers provides a proof, for the first time, for the
prediction that in stable isoDNA : RNA duplexes, the DNA
strand would prefer to assume S-type geometry. As the oligomers
bind only to the RNA targets and chemical modifications are
known to make them compatible with biological environments,15
this work opens up an entirely new paradigm of oligonucleotides
for development as antisense therapeutics.
This work was supported by CSIR, New Delhi (NWP0036)
and in part by Wellcome Trust, UK. NE got her fellowship
from UGC, New Delhi.
Notes and references
1 (a) J. C. Wallace and M. Edmons, Proc. Natl. Acad. Sci. U. S. A.,
1983, 80, 950–954; (b) I. M. Kerr and R. E. Brown, Proc. Natl.
Acad. Sci. U. S. A., 1978, 75, 256–260.
2 T. Wu and L. E. Orgel, J. Am. Chem. Soc., 1992, 114, 7963–7969.
3 P. A. Giannaris and M. J. Damha, Nucleic Acids Res., 1993, 21,
4742–4749.
4 M. Wasner, D. Arion, G. Borkow, A. Noronha, A. H. Uddin,
M. A. Parniak and M. J. Damha, Biochemistry, 1998, 37, 7478–7486.
5 (a) B. J. Premraj, P. K. Patel, E. R. Kandimalla, S. Agarwal,
R. V. Hosur and N. Yathindra, Biochem. Biophys. Res. Commun.,
2001, 283, 537–543; (b) V. Lalitha and N. Yathindra, Curr. Sci.,
1995, 68, 68–75.
6 T. L. Sheppard and R. C. Breslow, J. Am. Chem. Soc., 1996, 118,
9810–9811.
7 (a) T. P. Prakash, K.-E. Jung and C. Switzer, Chem. Commun.,
1996, 1793–1794; (b) K.-E. Jung and C. Switzer, J. Am. Chem.
Soc., 1994, 116, 6059–6061.
8 B. J. Premraj, S. Raja and N. Yathindra, Biophys. Chem., 2002, 95,
253–272.
9 (a) M. Polak, M. Manoharan, G. B. Inamati and J. Plavec, Nucleic
Acids Res., 2003, 31, 2066–2076; (b) B. J. Premraj, S. Raja,
N. S. Bhavesh, K. Shi, R. V. Hosur, M. Sundaralingam and
N. Yathindra, Eur. J. Biochem., 2004, 271, 2956–2966.
10 S. Y. Wodak, M. Y. Liu and H. W. Wyckoff, J. Mol. Biol., 1977,
116, 855–875.
11 W. Saenger, in Principles of Nucleic Acid Structure, Springer-
Verlag, New York, 1984.
12 (a) A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi,
R. Kumar, M. Meldgaard, C. E. Olsen and J. Wengel, Tetra-
hedron, 1998, 54, 3607–3630; (b) E. Lescrinier, R. Esnouf,
J. Schraml, R. Busson, H. A. Heus, C. W. Hilbers and
P. Herdewijn, Chem. Biol., 2000, 7, 719–731.
13 (a) A. M. Kawasaki, M. D. Casper, S. M. Freier, E. A. Lesnik,
M. C. Zounes, L. L. Cummins, C. Gonzalez and P. D. Cook,
J. Med. Chem., 1993, 36, 831–841; (b) M. J. Damha, C. J. Wilds,
A. Noronha, I. Brukner, G. Borkow, D. Arion and M. A. Parniak,
J. Am. Chem. Soc., 1998, 120, 12976–12977; (c) C.-N. Lok,
E. Viazovkina, K.-L. Min, E. Nagy, C. J. Wilds, M. J. Damha
and M. Parniak, Biochemistry, 2002, 41, 3457–3467; (d) C. J. Wilds
and M. J. Damha, Nucleic Acids Res., 2000, 28, 3625–3635.
14 P. S. Pallan, T. P. Prakash, F. Li, R. L. Eoff, M. Manoharan and
M. Egli, Chem. Commun., 2009, 2017–2019.
15 (a) S. Obika, K.-I. Morio, D. Nanbu and T. Imanishi, Chem.
Commun., 1997, 1643–1644; (b) S. Obika, K.-I. Morio, D. Nanbu,
Y. Hari, I. Hiromi and T. Imanishi, Tetrahedron, 2002, 58,
3039–3049; (c) S. Obika, K.-I. Morio, Y. Hari and T. Imanishi,
Bioorg. Med. Chem. Lett., 1999, 9, 515–518.
16 (a) J. S. Pudlo, X. Cao, S. Swaminathan and M. D. Matteucci,
Tetrahedron Lett., 1994, 35, 9315–9318; (b) R. Zou and
M. D. Matteucci, Tetrahedron Lett., 1996, 37, 941–944.
17 I. A. Mikhailopulo, N. E. Poopeiko, T. I. Pricota, G. G. Sivets,
E. I. Kvasyuk, J. Balzarini and E. De Clercq, J. Med. Chem., 1991,
34, 2195–2202.
18 H. Hayakawa, F. Takai, H. Tanaka, T. Miyasaka and
K. Yamaguchi, Chem. Pharm. Bull., 1990, 38, 1136–1139.
19 J. Krutzfeldt, N. Rajewsky, R. Braich, K. G. Rajeev, T. Tuschl,
M. Manoharan and M. Stoffel, Nature, 2005, 438, 685–689.
Fig. 3 O40-C40-C30-F30 gauche effect in 30-deoxy-30-xylofluoro and
30-deoxy-30-ribofluoro sugars.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4007–4009 4009