5 Following the oxidative cross-coupling concept the thioether 3 is
formed as an expected product of refractory thiolate oxidative
scavenging.
6 While the cross-coupling can be successfully catalyzed by a variety
of Pd complexes and Cu salts, the best yields were obtained with
Pd2dba3 and copper 3-methylsalicilate as the metal sources. For
the same reason DMF was selected as the solvent of our choice,
although DMA and NMP were almost equally efficient.
7 Although the palladium complexes in the higher oxidation state are
regularly employed as the catalysts, they are reduced through
transmetallation/reductive elimination step to form catalytically
active Pd(0) species.
8 (a) W. A Herrmann, Ch. Brossmer, K. Oefele, C.-P. Reisinger,
T. Priermeier, M. Beller and H. Fischer, Angew. Chem., Int. Ed.
Engl., 1995, 34, 1844; (b) M. Beller, H. Fischer, W. A. Herrmann,
K. Oefele and Ch. Brossmer, Angew. Chem., Int. Ed. Engl., 1995,
34, 1848; (c) F. D’Orlye and A. Jutand, Tetrahedron, 2005, 61,
9670; (d) J. Louje and J. Hartwig, Angew. Chem., Int. Ed. Engl.,
1996, 35, 2359.
9 Y. Yamamoto, N. Kirai and Y. Harada, Chem. Commun., 2008,
2010.
10 Ch. Jia, W. Lu, J. Oyamada, T. Kitamura, K. Matsuda, M. Irie
and Y. Fujiwara, J. Am. Chem. Soc., 2000, 122, 7252.
11 For corresponding Pt see: H. Kunyasu, F. Yamashita, J. Terao and
N. Kambe, Angew. Chem., Int. Ed., 2007, 46, 5929.
12 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467; (b) E. Negishi and L. Anastasia, Chem. Rev., 2003,
103, 1979; (c) R. Chinchilla and C. Najera, Chem. Rev., 2007, 107,
874; (d) Y. Zhao, H. Wang, X. Hou, Y. Hy, A. Lei, H. Zhang and
L. Zhu, J. Am. Chem. Soc., 2006, 128, 15048.
13 For the recent oxidative cross-couplings of terminal acetylenes and
boronic acids see: (a) M. Chen, X. Zheng, W. Li, J. He and A. Lei,
J. Am. Chem. Soc., 2010, 132, 4101; (b) D.-H. Wang, M. Wasa,
R. Giri and J.-Q. Yu, J. Am. Chem. Soc., 2008, 130, 7190;
(c) M.-B. Zhou, W.-T. Wei, Z.-X. Xie, Y. Lei and J.-H. Li,
J. Org. Chem., 2010, 75, 5635; (d) G. Zou, J. Zhu and J. Tang,
Tetrahedron Lett., 2003, 44, 8709.
14 (a) F. Gonzales-Bobes and G. C. Fu, J. Am. Chem. Soc., 2006, 128,
5360; (b) F. O. Arp and G. C. Fu, J. Am. Chem. Soc., 2005, 127,
10482; (c) J.-H. Li, Y. Liang and Y.-X. Xie, J. Org. Chem., 2005,
70, 4393; (d) S. Li, Y. Lin, J. Cao and S. Zhang, J. Org. Chem.,
2007, 72, 4067; (e) I. D. Kostas, F. J. Andreadaki, D. Kovala-
Demertzi, C. Prentjas and M. A. Demertzis, Tetrahedron Lett.,
2005, 46, 1967; (f) C. R. LeBlond, K. M. Butler, M. W. Ferrington
and M. A. Browe, Synth. Commun., 2009, 39, 636.
Scheme 2 Synthetic comparison of the present chemistry with a
Sonogashira protocol.
which illustrates an oxidative thiolate scavenging concept in a
metal catalyzed reaction. Distinctly different from the published
protocols which are, due to the robust catalysts, air tolerant,14
the present chemistry goes one step further, requiring air for
the successful reaction outcome.13 The synthetic value of the
chemistry as the complementary tool to the Sonogashira
protocol has been demonstrated on a series of functionalized
mercaptoacetylene substrates. The coupling mechanism, likely
involving the addition/elimination step, has been proposed and
corroborated by published accounts and control experiments.
The authors wish to thank to the Czech Academy of Sciences
(Z40550506, M200550908) and GACR (203/08/1318) for the
financial support.
Notes and references
1 J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651.
2 (a) L. S. Liebeskind and J. Srogl, J. Am. Chem. Soc., 2000, 122,
11260; (b) C. Savarin, J. Srogl and L. S. Liebeskind, Org. Lett.,
2001, 3, 91; (c) J. Srogl and L. S. Liebeskind, Org. Lett., 2002, 4,
979.
3 (a) J. M. Villalobos, J. Srogl and L. S. Liebeskind, J. Am. Chem.
Soc., 2007, 129, 15734; (b) For minireview see: H. Prokopcova and
C. O. Kappe, Angew. Chem., Int. Ed., 2009, 47, 2.
4 A. Henke and J. Srogl, J. Org. Chem., 2008, 73, 7783.
c
4284 Chem. Commun., 2011, 47, 4282–4284
This journal is The Royal Society of Chemistry 2011