n
max/cm-1 2957 s, 2927 vs, 2856 s, 1739, 1644 br, 1511 w, 1487 w,
3 M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J.
Heeger and C. L. Brabec, Adv. Mater., 2006, 18, 789.
4 M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Progr. Photovolt.:
Res. Appl., 2009, 17, 320.
5 (a) Y. Y. Liang, D. Q. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray and L. P.
Yu, J. Am. Chem. Soc., 2009, 131, 7792; (b) C. Hsiang-Yu, H. Jianhui,
Z. Shaoqing, L. Yongye, Y. Guanwen, Y. Yang, Y. Luping, W. Yue
and L. Gang, Nat. Photonics, 2009, 3, 649; (c) Y. Liang, Z. Xu, J. Xia,
S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Adv. Mater., 2010, 22,
E135.
1456, 1390 w, 1363 w, 1331 w, 1261, 1231 w, 1186 w, 1152 w, 1092,
1048, 1024, 920, 820, 800 and 748; dH(300 MHz; THF) 8.14, 7.97,
7.76, 7.44, 7.35, 6.96, 6.89 6.83, 6.79, 5.60, 5.06, 2.80, 2.67, 2.40,
2.04, 1.91, 1.77, 1.34, 1.27 and 0.91.
Conclusions
6 C. Winder and N. S. Sariciftci, J. Mater. Chem., 2004, 14, 1077.
7 (a) J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger
and G. C. Bazan, Nat. Mater., 2007, 6, 497; (b) J. Hou, H.-Y. Chen, S.
Zhang, R. I. Chen, Y. Yang, Y. Wu and G. Li, J. Am. Chem. Soc., 2009,
131, 15586; (c) S. H. Park, A. Roy, S. Beaupre´, S. Cho, N. Coates, J. S.
Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics,
2009, 3, 297.
8 (a) G. de la Torre, C. G. Claessens and T. Torres, Chem. Commun., 2007,
2000; (b) Y. Rio, M. S. Rodr´ıguez-Morgade and T. Torres, Org. Biomol.
Chem., 2008, 6, 1877; (c) E. M. Maya, C. Garc´ıa, E. M. Garc´ıa-Frutos,
P. Va´zquez and T. Torres, J. Org. Chem., 2000, 65, 2733.
9 (a) A. de la Escosura, M. V. Martinez-Diaz, D. M. Guldi and T. Torres,
J. Am. Chem. Soc., 2006, 128, 4112; (b) M. Quintiliani, A. Kahnt,
T. Wolfle, W. Hieringer, P. Vazquez, A. Gorling, D. M. Guldi and T.
Torres, Chem.–Eur. J., 2008, 14, 3765; (c) B. Ballesteros, G. de la Torre,
A. Shaerer, A. Hausmann, M. A. Herranz, D. M. Guldi and T. Torres,
Chem.–Eur. J., 2010, 16, 114.
Conjugated polythiophene- and polyphenylenevinylene-type
copolymers decorated with Pc molecules (PT-Pc and PPV-Pc)
have been successfully synthesized by post-polymerization “click
chemistry” reactions. Copolymers containing ca. 10% alkyne func-
tions in the side chains (i.e. PT-3 and PPV-3) react with an azido-
functionalized Pc molecule (Pc-3) to yield the corresponding
Pc-containing polymers PPV-Pc and PT-Pc. Integration of the
1H-NMR signals of the alkyl side chains indicated that the Pc
content in the final copolymers is 8% in the case of PT-Pc, and
9% for the PPV-Pc material. These Pc-containing polymers were
applied in BHJ solar cells with PCBM in 1 : 4 blends for PPV-
Pc, and 1 : 1 and 1 : 2 blends for PT-Pc. The spectral response
showed, in both materials, a clear contribution of the Pc around
700 nm to the photocurrent, this fact indicating that the light
absorbed by the Pc moiety leads to charge transfer processes,
and that the generated charges are collected. Therefore, with
this approach we succeeded in broadening the absorption of the
active layer in polymer solar cells. However, solubility of the
materials in CB (the processing solvent) is not good enough
for a correct processing, especially in the case of PT-Pc, and,
therefore, the nanoscale organization of the materials in the active
layer is not appropriate to achieve efficient devices. Nevertheless,
continued efforts in materials design, namely, incorporation of
other peripheral substituents to the Pc core to enhance the
solubility of the final material and/or changes in the ratio of
covalently bound Pcs, can lead to better processed polymer-Pc
materials which could lead to more efficient devices.
10 G. Bottari, G. de la Torre, D. M. Guldi and T. Torres, Chem. Rev., 2010,
110, 6768.
11 M. V. Martinez-Diaz, S. Esperanza, A. de la Escosura, M. Catellani,
S. Yunus, S. Luzzati and T. Torres, Tetrahedron Lett., 2003, 44,
8475.
12 (a) J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Appl. Phys. Lett.,
2004, 84, 3013; (b) W.-B. Chen, H.-F. Xiang, Z.-X. Xu, B.-P. Yan,
V. A. L. Roy, C.-M. Che and P.-T. Lai, Appl. Phys. Lett., 2007, 91,
191109; (c) V. Kim, H. M. Haverinen, Z. Wang, S. Madakuni, Y. Kim,
J. Li and G. E. Jabbour, Chem. Mater., 2009, 21, 4256; (d) N. Li, B. E.
Lassiter, R. R. Lunt, G. Wei and S. R. Forrest, Appl. Phys. Lett., 2009,
94, 023307; (e) D. Placencia, W. N. Wang, R. C. Shallcross, K. W.
Nebesny, M. Brumbach and N. R. Armstrong, Adv. Funct. Mater.,
2009, 19, 1913; (f) Z. R. Hong, R. Lessmann, B. Maennig, Q. Huang,
K. Harada, M. Riede and K. Leo, J. Appl. Phys., 2009, 106, 064511;
(g) B. Yu, L. Huang, H. Wang and D. Yan, Adv. Mater., 2010, 22, 1017.
13 M. K. R. Fischer, I. Lopez-Duarte, M. M. Wienk, M. V. Martinez-
Diaz, R. A. J. Janssen, P. Bauerle and T. Torres, J. Am. Chem. Soc.,
2009, 131, 8669.
14 (a) M. V. Mart´ınez-D´ıaz, G. de la Torre and T. Torres, Chem. Commun.,
2010, 46, 7090; (b) M. V. Mart´ınez-D´ıaz, T. Torres, in Handbook of
Porphyrin Sciences, K. Kadish, K. M. Smith and R. Guilard, Vol 10, p.
141, World Scientific Press, 2010; (c) M. V. Mart´ınez-D´ıaz, M. Ince and
T. Torres, Monatsh. Chem., 2011, DOI: 10.1007/s00706-010-0431-0.
15 (a) J.-J. Cid, J. H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Mart´ınez-
Ferrero, E. Palomares, J. Ko, M. Gra¨tzel and T. Torres, Angew. Chem.,
Int. Ed., 2007, 46, 8358; (b) B. C. O’Regan, I. Lopez-Duarte, M. V.
Martinez-Diaz, A. Forneli, J. Albero, A. Morandeira, E. Palomares, T.
Torres and J. R. Durrant, J. Am. Chem. Soc., 2008, 130, 2906; (c) J. J.
Cid, M. G. Iglesias, J. H. Yum, A. Forneli, J. Albero, E. M. Ferrero, P.
Va´zquez, M. Gra¨tzel, M. K. Nazeeruddin, E. Palomares and T. Torres,
Chem.–Eur. J., 2009, 15, 5130; (d) M. Garc´ıa-Iglesias, J.-J. Cid, J.-H.
Yum, A. Forneli, P. Va´zquez, M. Kd. Nazeeruddin, E. Palomares, M.
Gra¨tzel and T. Torres, Energy Environ. Sci., 2011, 4, 189–194.
16 A. Ltaief, R. B. Chaabane, A. Bouazizi and J. Davenas, Mater. Sci.
Eng., C, 2006, 26, 344.
Acknowledgements
The authors gratefully acknowledge the funding of the Ph.D.
grant of B.J.C. by the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen),
as well as the received support from the European Science
Foundation (ESF) for the activity entitled ‘New Generation of
Organic based Photovoltaic Devices’. This work was supported
by the European Union (SOLAR N-TYPE, MRTN CT-2006-
035533) and COST Action D35. Financial support by the MEC,
Spain (CTQ2008-00418/BQU, CONSOLIDER-INGENIO 2010
CDS 2007-00010, PLE2009-0070), and CAM (MADRISOLAR-
2, S2009/PPQ/1533) and the FWO (G.0685.06) is also gratefully
acknowledged. The research was further supported by the Euro-
pean Union (the European Regional Development Fund - ERDF)
in the Interreg IV-A project Organext.
17 E. M. J. Johansson, A. Yartsev, H. Rensmo and V. J. Sundstro¨m, J. Phys.
Chem. C, 2009, 113, 3014.
18 S. Honda, T. Nogami, H. Ohkita, H. Benten and S. Ito, ACS Appl.
Mater. Interfaces, 2009, 1, 804.
19 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew.
Chem., Int. Ed., 2002, 41, 2596.
20 W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 2008,
29, 952.
Notes and references
21 (a) B. Ballesteros, G. de la Torre, C. Ehli, G. M. A. Rahman, F. Agullo-
Rueda, D. M. Guldi and T. Torres, J. Am. Chem. Soc., 2007, 129, 5061;
(b) S. Campidelli, B. Ballesteros, A. Filoramo, D. D. Diaz, G. de la
Torre, T. Torres, G. M. A. Rahman, C. Ehli, D. Kiessling, F. Werner,
1 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., 2009, 21,
1323.
2 B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed., 2008, 47,
58.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 3979–3988 | 3987
©