without strong aggregation. Compared with spirobifluorene-
based molecular solid films,24 the 5–Brij76 film showed a shift
of the emission band to a longer wavelength exhibiting blue
owing to the extension of the p-conjugation length with
phenylethynyl substituents, which can be appropriate for
luminescence applications. On the other hand, the 6–Brij76
film showed a broad fluorescence spectrum attributable to
excimer-band emission with a QY of 0.38 (QY of a solution
of 6 in 2-propanol: 0.96). The lower QY of the 6-based
organosilica is probably due to self-quenching by the side-
by-side aggregation of the chromophore. Although solid-state
quenching is often observed in fluorescent polymer materials
including polyfluorene-based films,17–20,25 the bulky molecular
scaffold of 5 was effective in suppressing a large decrease in
QY during the polycondensation. The highly emissive PMO
film has potential for various luminescence applications
including white-LEDs and fluorescence sensing owing to its
unique light-harvesting properties.
7 Y. Goto, K. Nakajima, N. Mizoshita, M. Suda, N. Tanaka,
T. Hasegawa, T. Shimada, T. Tani and S. Inagaki, Microporous
Mesoporous Mater., 2009, 117, 535–540.
8 Y. Maegawa, Y. Goto, S. Inagaki and T. Shimada, Tetrahedron
Lett., 2006, 47, 6957–6960.
9 J. Morell, G. Wolter and M. Froba, Chem. Mater., 2005, 17,
804–808.
¨
10 (a) T. Shimada, K. Aoki, Y. Shinoda, T. Nakamura, N. Tokunaga,
S. Inagaki and T. Hayashi, J. Am. Chem. Soc., 2003, 125,
4688–4689; (b) K. Aoki, T. Shimada and T. Hayashi,
Tetrahedron: Asymmetry, 2004, 15, 1771–1777; (c) M. P. Kapoor,
S. Inagaki, S. Ikeda, K. Kakiuchi, M. Suda and T. Shimada,
J. Am. Chem. Soc., 2005, 127, 8174–8178; (d) M. P. Kapoor,
M. Yanagi, Y. Kasama, T. Yokoyama, S. Inagaki, T. Shimada,
H. Nanbu and L. R. Juneja, J. Mater. Chem., 2006, 16, 3305–3311;
(e) Y. Wang, S. Hu and W. J. Brittain, Macromolecules, 2006, 39,
5675–5678; (f) N. Fukaya, S. Onozawa, M. Ueda, K. Saitou,
Y. Takagi, T. Sakakura and H. Yasuda, Chem. Lett., 2010,
402–403; (g) N. Fukaya, H. Yamashita, H. Haga,
T. Tsuchimoto, S. Onozawa, T. Sakakura and H. Yasuda,
J. Organomet. Chem., 2011, 696, 825–828.
11 Y.-R. Yeon, Y. J. Park, J.-S. Lee, J.-W. Park, S.-G. Kang and
C.-H. Jun, Angew. Chem., Int. Ed., 2008, 47, 109–112.
12 Y. Maegawa, T. Nagano, T. Yabuno, H. Nakagawa and
T. Shimada, Tetrahedron, 2007, 63, 11467–11474.
13 (a) D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska,
S. H. Chen and L. J. Rothberg, Chem. Mater., 2002, 14, 1332–1339;
(b) X.-M. Liu, J. Xu, X. Lu and C. He, Macromolecules, 2006, 39,
1397–1402.
In conclusion, a novel spirobifluorene-bridged allylsilane
precursor, which could be purified by silica gel chromatography,
was successfully synthesized via a recently developed new
route using MBAS. Acidic sol–gel polycondensation of the
allylsilane precursors yielded mesostructured organosilica
films. The spirocarbon was effective in forming a structurally
stable organosilica framework and exhibiting efficient
fluorescence. These results demonstrate the suitability of MBAS
for use in designing various functional organosilane precursors
intended for the preparation of highly functional PMOs.
14 R. Wu, J. S. Schumm, D. L. Pearson and J. Tour, J. Org. Chem.,
1996, 61, 6906–6921.
15 A. Wakamiya, T. Ide and S. Yamaguchi, J. Am. Chem. Soc., 2005,
127, 14859–14866.
16 G. Zeng, W.-L. Yu, S.-J. Chua and W. Huang, Macromolecules,
2002, 35, 6907–6914.
17 H.-J. Su, F.-I. Wu and C.-F. Shu, Macromolecules, 2004, 37,
7197–7202.
Notes and references
18 J. Lee, H.-J. Cho, B.-J. Jung, N. S. Cho and H.-K. Shim,
Macromolecules, 2004, 37, 8523–8529.
1 (a) S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna and
O. Terasaki, J. Am. Chem. Soc., 1999, 121, 9611–9614;
(b) B. J. Melde, B. T. Holland, C. F. Blanford and A. Stein, Chem.
Mater., 1999, 11, 3302–3308; (c) T. Asefa, M. J. MacLachlan,
N. Coombs and G. A. Ozin, Nature, 1999, 402, 867–871;
(d) A. Stein, B. J. Melde and R. C. Schroden, Adv. Mater., 2000,
12, 1403–1419; (e) F. Hoffmann, M. Cornelius, J. Morell and
19 (a) X.-M. Liu, T. Lin, J. Huang, X.-T. Hao, K. S. Ong and C. He,
Macromolecules, 2005, 38, 4157–4168; (b) X.-M. Liu, J. Xu, X. Lu
and C. Hu, Macromolecules, 2006, 39, 1397–1402.
20 C.-L. Chiang, C.-F. Shu and C.-T. Chen, Org. Lett., 2005, 7,
3717–3720.
21 (a) N. Mizoshita, Y. Goto, T. Tani and S. Inagaki, Adv.
Mater., 2009, 21, 4798–4801; (b) N. Mizoshita, Y. Goto,
Y. Maegawa, T. Tani and S. Inagaki, Chem. Mater., 2010, 22,
2548–2554.
M. Froba, Angew. Chem., Int. Ed., 2006, 45, 3216–3251;
¨
(f) M. P. Kapoor and S. Inagaki, Bull. Chem. Soc. Jpn., 2006,
79, 1463–1475; (g) S. Fujita and S. Inagaki, Chem. Mater., 2008,
20, 891–908; (h) T. Tani, N. Mizoshita and S. Inagaki, J. Mater.
Chem., 2009, 19, 4451–4456.
2 S. Inagaki, S. Guan, T. Ohsuna and O. Terasaki, Nature, 2002,
416, 304–307.
3 M. P. Kapoor, Q. Yang and S. Inagaki, J. Am. Chem. Soc., 2002,
124, 15176–15177.
4 N. Mizoshita, Y. Goto, M. P. Kapoor, T. Shimada, T. Tani and
S. Inagaki, Chem.–Eur. J., 2009, 15, 219–226.
22 S. Inagaki, O. Ohtani, Y. Goto, K. Okamoto, M. Ikai,
K. Yamanaka, T. Tani and T. Okada, Angew. Chem., Int. Ed.,
2009, 48, 4042–4046.
23 For detailed experimental procedures for the synthesis of
ethynyl-MBAS 3, precursors 5 and 6, and for the preparation of
mesostructured organosilica via acidic sol–gel polycondensation,
see ESIw.
24 N. Johansson, J. Salbeck, J. Bauer, F. Weissortel, P. Broms,
¨
¨
A. Andersson and W. R. Salaneck, Adv. Mater., 1998, 10,
1136–1141.
5 H. Takeda, Y. Goto, Y. Maegawa, T. Ohsuna, T. Tani,
K. Matsumoto, T. Shimada and S. Inagaki, Chem. Commun.,
2009, 6032–6034.
6 N. Mizoshita, M. Ikai, T. Tani and S. Inagaki, J. Am. Chem. Soc.,
2009, 131, 14225–14227.
25 S. M. King, I. I. Perepichka, I. F. Perepichka, F. B. Dias,
M. R. Bryce and A. P. Monkman, Adv. Funct. Mater., 2009, 19,
586–591.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5025–5027 5027