Notes and references
1 A. F. Abdel-Madig, K. G. Carson, B. D. Harris, C. A. Maryanoff
and R. D. Shah, J. Org. Chem., 1996, 61, 3849–3862.
2 R. F. Borch, Org. Synth., 1972, 52, 124–127.
3 L. Zhenjiang, Synlett, 2005, 182–183.
4 C. Cimarelli and G. Palmieri, Tetrahedron: Asymmetry, 2000, 11,
2555–2563.
5 L. Lefort, J. A. F. Boogers, T. Kuilman, R. J. Vijn, J. Janssen,
H. Straatman, J. G. de Vries and A. H. M. de Vries, Org. Process
Res. Dev., 2010, 14, 568–573.
6 A. H. Vetter and A. Berkessel, Synthesis, 1995, 419–422.
7 T. Yoshida and K. Harada, Bull. Chem. Soc. Jpn., 1972, 45,
3706–3710.
8 Presented in part at the Pharmacopeia Forum, 2010.
9 R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008–2022.
10 D. Richter and H. Mayr, Angew. Chem., Int. Ed., 2009, 48,
1958–1961.
Fig. 3 POV-ray depiction of 12. Carbon = black, hydrogen = white,
11 X. Zhu, Y. Yang, M. Zhang and J. Cheng, J. Am. Chem. Soc.,
2003, 125, 15298–15299.
nitrogen = green, boron = yellow, and fluorine = pink.
12 X. Zhu, H. Li, Q. Li, T. Ai, J. Lu, Y. Yang and J. Cheng,
Chem.–Eur. J., 2003, 9, 871–880.
13 B. Zhao, X. Zhu, Y. Lu, C. Xia and J. Cheng, Tetrahedron Lett.,
2000, 41, 257–260.
Table 2 Diastereoselectivity of stoichiometric reduction of chiral
imines with NaBH3CN and NaHB(OAc)3
14 D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49,
46–76.
Reductant
Reductant
15 D. W. Stephan, Chem. Commun., 2010, 46, 8526–8533.
16 D. W. Stephan, Dalton Trans., 2009, 3129–3136.
17 D. W. Stephan, Org. Biomol. Chem., 2008, 6, 1535–1539.
18 T. A. Rokob, A. Hamza, A. Stirling and I. Papai, J. Am. Chem.
Soc., 2009, 131, 2029–2036.
19 P. A. Chase, G. C. Welch, T. Jurca and D. W. Stephan, Angew.
Chem., Int. Ed., 2007, 46, 8050–8053.
20 P. A. Chase, T. Jurca and D. W. Stephan, Chem. Commun., 2008,
1701–1703.
21 P. Spies, G. Erker, G. Kehr, K. Bergander, R. Froehlich,
S. Grimme and D. W. Stephan, Chem. Commun., 2007, 5072–5074.
22 D. P. Huber, G. Kehr, K. Bergander, R. Frohlich, G. Erker,
S. Tanino, Y. Ohki and K. Tatsumi, Organometallics, 2008, 27,
5279–5284.
NaBH3CN NaHB(OAc)3
NaBH3CN NaHB(OAc)3
Imine
Imine
1
2
3
4
5
3
6
25
30
26
58
58
70
68
38
6
7
8
9
10
24
15
35
1
66
85
79
66
31
10
Reactions with NaBH3CN and NaBH(OAc)3 employed acetic acid as
the proton source.
diastereoselectivities ranging between 1–35% while those from
NaBH(OAc)3 gave rise to diastereoselectivities from 31 to 85%.
Collectively it appears that proximity of the chiral center to
the unsaturated-carbon center of the imine rather than the
nitrogen atom facilitates higher diastereoselectivities. In addition,
these reduction data suggest that the steric bulk around the
borohydride anion is key to diastereoselectivity. The catalytic
reductions of the camphor– and menthone–imines result in the
near quantitative diastereoselectivities. This is attributed to the
significantly larger [HB(C6F5)3]À anion in comparison to
[BH3CN]À and [BH(OAc)3]À anions used in stoichiometric
reductions. This view is supported by computed cone angles
of 1861, 1631 and 921 for the borohydrides, [HB(C6F5)3]À,
[HB(OAc)3]À and [BH3CN]À, respectively (ESIw).
The reduction of chiral imines with B(C6F5)3 resulted in
excellent diastereoselectivities when the chiral center is near the
unsaturated carbon center. This is attributed to the larger effect
of proximity of the chiral center on the approach of the sterically
bulky [HB(C6F5)3]À. The presence of the chiral center near the
unsaturated nitrogen center had a less impact on the diastereo-
selectivity of the hydrogenation. Further mechanistic studies and
the application of FLP-based hydrogenation catalysts continue
to be a subject of intense efforts in our laboratories.
23 P. Spies, S. Schwendemann, S. Lange, G. Kehr, R. Frohlich and
¨
G. Erker, Angew. Chem., Int. Ed., 2008, 47, 7543–7546.
24 H. D. Wang, R. Frohlich, G. Kehr and G. Erker, Chem. Commun.,
2008, 5966–5968.
¨
25 K. V. Axenov, G. Kehr, R. Frohlich and G. Erker, J. Am. Chem.
Soc., 2009, 131, 3454–3455.
26 S. Grimme, H. Kruse, L. Goerigk and G. Erker, Angew. Chem.,
Int. Ed., 2010, 49, 1402–1405.
27 S. Schwendemann, T. A. Tumay, K. V. Axenov, I. Peuser,
G. Kehr, R. Frohlich and G. Erker, Organometallics, 2010, 29,
1067–1069.
¨
28 V. Sumerin, F. Schulz, M. Atsumi, C. Wang, M. Nieger,
M. Leskela, T. Repo, P. Pyykko and B. Rieger, J. Am. Chem.
Soc., 2008, 130, 14117–14119.
29 V. Sumerin, F. Schulz, M. Nieger, M. Leskela, T. Repo and
B. Rieger, Angew. Chem., Int. Ed., 2008, 47, 6001–6003.
30 F. Schulz, V. Sumerin, M. Leskela, T. Repo and B. Rieger, Dalton
Trans., 2010, 39, 1920–1922.
31 E. J. Corey and C. J. Helal, Angew. Chem., Int. Ed., 1998, 37,
1986–2012.
32 H. C. Brown and P. V. Ramachandran, J. Organomet. Chem.,
1995, 500, 1–19.
33 D. J. Chen and J. Klankermayer, Chem. Commun., 2008,
2130–2131.
34 D. J. Chen, Y. T. Wang and J. Klankermayer, Angew. Chem., Int.
Ed., 2010, 49, 9475–9478.
35 M. Ullrich, A. J. Lough and D. W. Stephan, J. Am. Chem. Soc.,
2009, 131, 52–53.
36 J. M. Blackwell, W. E. Piers, M. Parvez and R. McDonald,
Organometallics, 2002, 21, 1400–1407.
The authors thank NSERC of Canada for financial support.
D. W. S. is grateful for the award of a Canada Research Chair
and a Killam Research Fellowship. Z. M. H. is grateful for the
award of an Ontario Postdoctoral Fellowship.
37 N. Millot, C. C. Santini, B. Fenet and J. M. Basset, Eur. J. Inorg.
Chem., 2002, 3328–3335.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5729–5731 5731