V. Gudipati, D. P. Curran / Tetrahedron Letters 52 (2011) 2254–2257
2257
TBS TBS TBS TBS
Ph
S
4. Experimental
N
N
OTBS
OTBS
OTBS
O
O
O
O
N
+
(Boc) N
2
N
Complete experimental details and compound characterization
data along with copies of the key spectra can be found in the thesis
of Dr. V. Gudipati.18
O
2
2
TBS TBS TBS
2, KHMDS, THF,
−78 o C, 30 min;
O
O
O
S
S
Acknowledgments
O
CO2CH3
then 3
CH3
We thank the National Institutes of Health, National Institute of
General Medical Sciences, for funding this work.
3
References and notes
H CO C
3
2
CH
S
3
1. (a) Kamiyama, T.; Umino, T.; Fujisaki, N.; Fujimori, K.; Satoh, T.; Yamashita, Y.;
Ohshima, S.; Watanabe, J.; Yokose, K. J. Antibiot. 1993, 46, 1039–1046; (b)
Kamiyama, T.; Itezono, Y.; Umino, T.; Satoh, T.; Nakayama, N.; Yokose, K. J.
Antibiot. 1993, 46, 1047–1054.
2. Kobayashi, Y.; Czechitzky, W.; Kishi, Y. Org. Lett. 2003, 5, 93–96.
3. (a) Satoh, T.; Yamashita, Y.; Kamiyama, T.; Watanabe, J.; Steiner, B.; Hadvary,
B.; Arisawa, M. Thromb. Res. 1993, 72, 389–396; (b) Satoh, T.; Yamashita, Y.;
Kamiyama, T.; Arisawa, M. Thromb. Res. 1993, 72, 401–409.
TBSO
TBS TBS TBS
TBS
TBS TBS
OTBS
OTBS
O
O
O
O
O O
S
(Boc) N
2
OTBS
35, not isolated
Scheme 8. Attempted coupling reactions.
4. BouzBouz, S.; Cossy, J. Org. Lett. 2004, 6, 3469–3472.
5. Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533–536.
6. (a) Gudipati, V.; Bajpai, R.; Curran, D. P. Collect. Czech. Chem. Commun. 2009, 74,
774–783; (b) Zhang, K.; Gudipati, V.; Curran, D. P. Synlett 2010, 667–674.
7. Friestad, G. K.; Sreenilayam, G. Org. Lett. 2010, 12, 5016–5019.
8. Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563–2585.
9. Smith, A. B.; Adams, C. M. Acc. Chem. Res. 2004, 37, 365–377.
10. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A.
E.; Furrow, M. E.; Jacobson, E. N. J. Am. Chem. Soc. 2002, 124, 1307–1315.
11. Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.;
Mitchell, H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc.
2003, 125, 15443–15454.
12. Davidson, M. H.; McDonald, F. E. Org. Lett. 2004, 6, 1601–1604.
13. Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron 2002, 58, 1853.
14. (a) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1979, 978–980;
(b) Fuwa, H.; Okamura, Y.; Natsugari, H. Tetrahedron 2004, 60, 5341–5438.
15. Funel, J.-A.; Pronet, J. J. Org. Chem. 2004, 69, 4555–4558.
not be isolated from any experiment. Neither sulfone 2 nor alde-
hyde 3 was recovered in substantial quantities.
3. Conclusions
Efficient, scalable, and stereoselective syntheses of six main
fragments (4–9) of tetrafibricin have been achieved. These frag-
ments can potentially be assembled to make the natural product
in several different ways. Here a highly convergent route was ex-
plored to couple three fragments each to make two large halves
(C1–20 and C21–C40) of tetrafibricin. The reaction to couple these
halves failed, so other orders of fragment coupling need to be pur-
sued to make tetrafibricin. The availability of these fragments and
the successful coupling reactions described herein will facilitate
that work.
16. Yoshimura, T.; Yakushiji, F.; Kondo, S.; Wu, X.; Shindo, M.; Shishido, K. Org. Lett.
2006, 8, 475–478.
17. (a) Mori, Y.; Asai, M.; Kawade, J.; Furukawa, H. Tetrahedron 1995, 51, 5315–
5321; (b) Denmark, S.; Shinji, F. J. Am. Chem. Soc. 2005, 127, 8971–8973.