Chiral Hydridoiridium(III) Complexes
J. M. Mihelcic, Inorg. Synth. 1989, 26, 122–126; e) R. H.
Crabtree, M. F. Mellea, J. M. Mihelcic, Inorg. Synth. 1990, 28,
56–60.
gata, T. Hirao, Y. Kataoka, V. Ratovelomanana-Vidal, J. P.
Genet, K. Mashima, Organometallics 2006, 25, 2505–2513.
[14]
[15]
For the concept of “steric pressure”, see: a) W. C. Kaska, H. A.
Mayer, Chem. Rev. 1994, 94, 1239–1272; b) R. T. Boré, Y.
Zhang, J. Organomet. Chem. 2005, 690, 2651–2657. c) The for-
mation of some triply chlorido-bridged binuclear N-heterocy-
clic carbene complexes [{(NHC)(CH2)3(NHC)}2Ir2H2(µ-Cl)3]
PF6 from [(η4-1,5-C8H12)Ir{(NHC)(CH2)3(NHC)}]PF6 and
HCl has been explained similarly.[13o]
a) A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T.
Souchi, R. Noyori, J. Am. Chem. Soc. 1980, 102, 7932–7934;
b) K. Toriumi, T. Ito, H. Takaya, T. Souchi, R. Noyori, Acta
Crystallogr., Sect. B 1982, 38, 807–812; c) K. Tani, T. Yama-
gata, Y. Tatsuno, Y. Yamagata, K.-I. Tomita, S. Akutagawa,
H. Kumobayashi, S. Otsuka, Angew. Chem. 1985, 97, 232–234;
Angew. Chem. Int. Ed. Engl. 1985, 24, 217–219; d) T. Ohta,
H. Takaya, R. Noyori, Inorg. Chem. 1988, 27, 566–569; e) K.
Mashima, K. Kusano, T. Ohta, R. Noyori, J. Chem. Soc. Chem.
Commun. 1989, 1208–1210; f) R. Noyori, H. Takaya, Acc.
Chem. Res. 1990, 23, 345–350; g) T. Yamagata, A. Iseki, K.
Tani, Chem. Lett. 1997, 12, 1215–1216; h) R. Dorta, P. Egli, F.
Zürcher, A. Togni, J. Am. Chem. Soc. 1997, 119, 10857–10858.
The Cambridge Structural Database System, version CSD
V5.28, 2007 (403790 entries): a) F. H. Allen, O. Kennard,
Chem. Des. Autom. News 1993, 8, 32–37; b) F. H. Allen, Acta
Crystallogr., Sect B 2002, 58, 380–388; c) I. J. Bruno, J. C. Cole,
P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pear-
som, R. Taylor, Acta Crystallogr., Sect B 2002, 58, 389–397.
a) J. F. Harrod, D. F. R. Gilson, R. Charles, Can. J. Chem.
1969, 47, 1431–1433; b) W. R. Roper, K. G. Town, J. Or-
ganomet. Chem. 1983, 252, C97–C100; c) C. E. Johnson, R.
Eisenberg, J. Am. Chem. Soc. 1985, 107, 3148–3160; d) V. V.
Grushin, V. I. Bakhmutov, I. S. Akhrem, M. E. Vol’pin, Izv.
Akad. Nauk SSSR, Ser. Khim. 1988, 494–495; e) V. V. Grushin,
A. B. Vymenits, M. E. Vol’pin, J. Organomet. Chem. 1990, 382,
185–189.
[5]
[6]
a) M. G. Clerici, S. Di Gioacchino, F. Maspero, E. Perrotti,
A. Zanobi, J. Organomet. Chem. 1975, 84, 379–388; b) R. H.
Crabtree, H. Felkin, G. E. Morris, J. Organomet. Chem. 1977,
141, 205–215; c) L. Garlaschelli, S. I. Khan, R. Bau, J. Am.
Chem. Soc. 1985, 107, 7212–7213; d) S. E. Landau, K. E. Groh,
A. J. Lough, R. H. Morris, Inorg. Chem. 2002, 41, 2995–3007;
e) S. Brinkmann, R. H. Morris, R. Ramachandran, S.-H. Park,
Inorg. Synth. 1998, 32, 303–308.
A survey in SciFinder revealed that the triflate salt of the
[IrH2(1,2-phdn)(PPh3)2]+ cation has previously been obtained
from the substitutionally labile sulfonato complex [IrH2(O-
SO2CF3)(PPh3)3] and the diamine in refluxing benzene: P. A.
Harding, S. D. Robinson, J. Chem. Soc. Dalton Trans. 1987,
947–952.
A. G. Orpen, J. Chem. Soc. Dalton Trans. 1980, 2509–2516.
Albeit frequently used in the absence of neutron diffraction
data, the HYDEX procedure is not an infallible method and
may result in inaccurate hydride positions due to the lack of
suitable potentials for the different metal atoms. See, for exam-
ple: a) A. Albinati, S. Chaloupka, A. Currao, W. T. Klooster,
Th. F. Koetzle, R. Nesper, L. M. Venanzi, Inorg. Chim. Acta
2000, 300–302, 903–911; b) A. Albinati, L. M. Venanzi, Coord.
Chem. Rev. 2000, 200–202, 687–715.
a) H. Uekusa, S. Ohba, K. P. Simonsen, M. Kojima, J. Fujita,
Acta Crystallogr., Sect. C 1992, 48, 1111–1112; b) T. Suzuki,
M. Rude, K. P. Simonsen, M. Morooka, H. Tanaka, S. Ohba,
F. Galsboel, J. Fujita, Bull. Chem. Soc. Jpn. 1994, 67, 1013–
1023.
a) L. Dahlenburg, R. Götz, Inorg. Chim. Acta 2004, 357, 2875–
2880; b) L. Dahlenburg, R. Götz, Eur. J. Inorg. Chem. 2004,
888–905.
K. Mashima, T. Akutagawa, X. Zhang, H. Takaya, T. Take-
tomi, H. Kumobayashi, S. Akutagawa, J. Organomet. Chem.
1992, 428, 213–222.
For a collection of Ir–Cl distances opposite to ligands pur-
ported to exert respectively weak, intermediate, or strong trans
influences, see, for example: M. J. Auburn, R. D. Holmes-
Smith, S. R. Stobart, P. K. Bakshi, T. S. Cameron, Organome-
tallics 1996, 15, 3032–3036.
For examples with terminal phosphane, carbonyl, carbene, and
other two-electron donor ligands, see ref.[5b] and: a) P. J. Rob-
erts, G. Ferguson, Acta Crystallogr., Sect. B 1976, 32, 1513–
1517; b) M. J. Nolte, E. Singleton, E. van der Stok, Acta Crys-
tallogr., Sect. B Chem. 1978, 34, 1684–1687; c) H. H. Wang,
L. H. Pignolet, Inorg. Chem. 1980, 19, 1470–1480; d) A. L. Cas-
alnuovo, J. C. Calabrese, D. Milstein, J. Am. Chem. Soc. 1988,
110, 6738–6744; e) A. M. Mueting, W. Bos, B. D. Alexander,
P. D. Boyle, J. A. Casalnuovo, S. Balaban, L. N. Ito, S. M.
Johnson, L. H. Pignolet, New J. Chem. 1988, 12, 505–527; f)
A. M. Mueting, P. D. Boyle, R. Wagner, L. H. Pignolet, Inorg.
Chem. 1988, 27, 271–279; g) H. H. Wang, A. M. Mueting, J. A.
Casalnuovo, S. Yan, J. K. H. Barthelmes, L. H. Pignolet, Inorg.
Synth. 1990, 27, 22–26; h) K. Tani, A. Iseki, T. Yamagata, An-
gew. Chem. 1998, 110, 3590–3592; Angew. Chem. Int. Ed. 1998,
37, 3381–3383; i) M. V. Jiménez, E. Sola, J. A. López, F. J. La-
hoz, L. A. Oro, Chem. Eur. J. 1998, 4, 1398–1410; j) J. R.
Bleeke, P. V. Hinkle, N. P. Rath, Organometallics 2001, 20,
1939–1951; k) M. V. Jiménez, E. Sola, J. Caballero, J. J. Lahoz,
L. A. Oro, Angew. Chem. 2002, 114, 1256–1259; Angew. Chem.
Int. Ed. 2002, 41, 1208–1259; l) R. Dorta, H. Rozenberg,
L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2002, 124,
188–189; m) R. Dorta, H. Rozenberg, L. J. W. Shimon, D.
Milstein, Chem. Eur. J. 2003, 9, 5237–5249; n) R. Dorta, D.
Broggini, R. Stoop, H. Rüegger, F. Spindler, A. Togni, Chem.
Eur. J. 2004, 10, 267–278; o) M. Viciano, M. Poyatos, M.
Sanaú, E. Peris, A. Rossin, G. Ujaque, A. Lledós, Organometal-
lics 2006, 25, 1120–1134; p) T. Yamagata, H. Tadaoka, M. Na-
[7]
[8]
[16]
[17]
[9]
[10]
[11]
[12]
[18]
[19]
S. Park, M. P. Johnson, D. M. Roundhill, Organometallics
1989, 8, 1700–1707.
Some remaining ambiguity about the assignment of OC-6-43
stereochemistry to compounds 6a–c arises from the recently
reported characterization of the bis(chelate)complexes
[Ir(H)(X)(O2CMe){(S)-binap}] (X = Cl, Br, I) as OC-6-43 and
OC-6-23 stereoisomers, where the IrH chemical shifts of the
two forms (δ ≈ –25 ppm) differ, at best, by around 2 ppm.[13p]
For pertinent reviews on heterolytic H2 activation, see: a) P. J.
Bothers, Prog. Inorg. Chem. 1981, 28, 1–61; b) G. J. Kubas, Acc.
Chem. Res. 1988, 21, 120–128; c) P. G. Jessop, R. H. Morris,
Coord. Chem. Rev. 1992, 121, 121–284; d) D. M. Heinekey,
W. J. Oldham Jr, Chem. Rev. 1993, 93, 913–926; e) R. H.
Crabtree, Angew. Chem. 1993, 105, 828–845; Angew. Chem. Int.
Ed. Engl. 1993, 32, 789–805; f) M. A. Esteruelas, L. A. Oro,
Chem. Rev. 1998, 98, 577–588; g) G. Jia, C.-P. Lau, Coord.
Chem. Rev. 1999, 190–192, 83–108; h) D. Sellmann, A. Fürsat-
tel, J. Sutter, Coord. Chem. Rev. 2000, 200–202, 545–561; i) G. J.
Kubas, Metal Dihydrogen and σ-Bond Complexes, Kluver Aca-
demic/Plenum Publishers, New York, 2001, chapters 9 and 10.
Recently described iridium(I)-based catalysts with chiral planar
(diphenylphosphanylferrocenyl)thioether ligands give enantio-
selectivities of up to 87% for the same acetophenone substrate:
E. Le Roux, R. Malacea, E. Manoury, R. Poli, L. Gonsalvi,
M. Peruzzini, Adv. Synth. Catal. 2007, 349, 309–313.
a) H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Koz-
awa, E. Katayama, A. F. England, T. Ikariya, R. Noyori, An-
gew. Chem. 1998, 110, 1792–1796; Angew. Chem. Int. Ed. 1998,
37, 1703–1707; b) Ch. A. Sandoval, T. Ohkuma, K. Muñiz, R.
Noyori, J. Am. Chem. Soc. 2003, 125, 13490–13503.
[13]
[20]
[21]
[22]
[23]
a) M. F. Asaro, I. Nakayama, R. B. Wilson Jr, J. Org. Chem.
1992, 57, 778–782; b) C. Hirel, K. E. Vostrikova, J. Pécaut, V. I.
Ovcharenko, O. Rey, Chem. Eur. J. 2001, 7, 2007–2014.
Eur. J. Inorg. Chem. 2007, 4364–4374
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
4373