J. Jayabharathi et al. / Spectrochimica Acta Part A 79 (2011) 137–147
147
Acknowledgments
One of the author Dr. J. Jayabharathi, associate professor in
chemistry, Annamalai University is thankful to Department of Sci-
ence and Technology [No. SR/S1/IC-07/2007] and University Grants
commission (F. No. 36-21/2008 (SR)) for providing fund to this
research work.
References
[1] J.G. Lambardino, E.H. Wiseman, J. Med. Chem. 17 (1974) 1182–1188.
[2] T. Maier, R. Schmierer, K. Bauer, H. Bieringer, H. Buerstell, B. Sachse, US Patent
820,335, Chem. Abstr. 111 (1989) 19494.
[3] I. Lantos, W. Zhang, X. Shiu, D.S. Eggleston, J. Org. Chem. 58 (1993) 7092–7095.
[4] C. Zhang, E.J. Moran, T.F. Woiwade, K.M. Short, A.M. Mjalli, Tetrahedron Lett.
37 (1996) 751–754.
[5] S. Jianwei, Y. Dong, L. Cao, X. Wang, S. Wang, Y.Y. Hu, J. Org. Chem. 69 (2004)
8932–8934.
[6] K. Mahanalingam, M. Nethaji, P.K. Das, J. Mol. Struct. 378 (1996) 177–188.
[7] R. Koch, J.J. Finnerty, T. Bruhn, J. Phys. Org. Chem. 21 (2008) 954–962.
[8] G. Ye, W.P. Henry, C. Chen, A. Zhou, C.U. Pittman Jr., Tetrahedron Lett. 50 (2009)
2135–2139.
[9] D.M. Mitchell, P.J. Morgan, D.W. Pratt, J. Phys. Chem. A 112 (2008) 12597–12601.
[10] P. Rattananakin, C.U. Pittman Jr., W.E. Collier, S. Daebo, Struct. Chem. 18 (2007)
399–407.
[11] G. Fischer, W.D. Rudorf, E. Kleinpeter, Magn. Reson. Chem. 29 (1991) 204–206.
[12] E. Kleinpeter, A. Schulenburg, Tetrahedron Lett. 46 (2005) 5995–5997.
[13] E. Kleinpeter, A. Koch, B. Mikhova, B.A. Stamboliyska, T.M. Kolev, Tetrahedron
Lett. 49 (2008) 1323–1327.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, P. Hratchian, J.B.
Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,
O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian 03, Revision C. 02, Gaussian, Inc, Wallingford,
CT, 2004.
[15] S.R. Flom, P.F. Barbara, Chem. Phy. Lett. 94 (1983) 488–493.
[16] M. Wagener, J. Sadowsky, J. Gasteiger, J. Am. Chem. Soc. 117 (1995) 7769–7775.
[17] Y. Yang, W.J. Zhang, X.M. Gao, Int. J. Quantum Chem. 106 (2006) 1199–1207.
[18] P. Gayathri, J. Jayabharathi, N. Srinivasan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E66 (2010) o1703.
[19] Y. Porter, K.M. OK, N.S.P. Bhuvanesh, P.S. Halasyamani, Chem. Mater. 13 (2001)
1910–1915.
[20] M. Narayana Bhat, S.M. Dharmaprakash, J. Cryst. Growth 236 (2002) 376–380.
[21] D. Steiger, C. Ahlbrandt, R. Glaser, J. Phys. Chem. B 102 (1998) 4257–4260;
J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, J. Fluoresc.
(2010), doi:10.1007/s10895-010-0737-7.
[22] M.Y. Ismet Kaya, J. Fluoresc., in press;
J. Jayabharathi, V. Thanikachalam, A. Saravanan, J. Photochem. Photobiol. A 208
(2009) 13–20.
Fig. 8. (a) Experimental IR spectra of 1. (b) Theoretical IR and Raman spectra of 1.
[23] S.G. Prabhu, P.M. Rao, S.I. Bhat, V. Upadyaya, S.R. Inamdar, J. Cryst. Growth 233
(2001) 375–379;
metric deformations which are in satisfactory agreement with the
theoretical values.
J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, M. Venkatesh
Perumal, Spectrochim. Acta A, in press.
[24] V. Crasta, V. Ravindrachary, R.F. Bharantri, R. Gonsalves, J. Cryst. Growth 267
(2004) 129–133.
[25] P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. Chem. Phys. 1 (1999)
3519–3525.
4. Conclusion
[26] Y. Yang, W.J. Zhang, X.M. Gao, Int. J. Quant. Chem. 106 (2006) 1199–1207.
[27] S.F. Tayyari, S. Laleh, Z.M. Tekyeh, M.Z. Tabrizi, Y.A. Wang, H. Rahemi, J. Mol.
Struct. 827 (2007) 176–187.
[28] J. Marshal, Ind. J. Phys. 7213 (1988) 659–661.
[29] G. Wang, F. Lian, Z. Xie, G. Su, L. Wang, X. Jing, F. Wang, Synth. Met. 131 (2002)
1–7.
[30] M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Com-
pounds, Wiley, Asia, 2003.
[31] R. Shanmugam, D.N. Sathyanarayana, Spectrochim. Acta A 40 (1984) 757–761.
[32] J.F. Arenas, J.T. Lopez Navarrete, J.I. Marcos, J.C. Otero, J. Chem. Soc. Faraday
Trans. 81 (1985) 405–416.
[33] N. Sundarganesan, S. Ayyappan, H. Umamaheswari, B.D. Joshua, Spectrochim.
Acta A 66 (2007) 17–27.
[34] M. Ramalingam, M. Jaccob, J. Swaminathan, P. Venuvanalingam, N. Sundargane-
san, Spectrochim. Acta A 71 (2008) 996–1002.
We have reported new simple and an efficient route to the
synthesis of biologically active heterocycles, such as substituted
imidazoles using iodine as the catalyst. The presence of ˛ twist
in these imidazoles drops the fluorescence quantum yield. The
observed sequence of dipole moment and hyperpolarizability can
be explained by the reduced planarity in these chromophores
caused by the steric interaction between the two phenyl rings at
C(2) and N(4) atoms. Hence, the steric interaction must be reduced
in order to obtain larger ˇ0 values. A clear linear dependence of
hyperpolarizability versus ꢀ*/ꢀ/2 shows that the polarity of these
compounds are important for potential application as NLO material.
From the physicochemical studies on imidazoles it was concluded
that molecules of higher hyperpolarizability have larger dipole
moments used as potential NLO molecules.
[35] N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of
Organic Structures, Wiley, New York, 1994.
[36] M. Karaback, A. Coruh, M. Kurt, J. Mol. Struct. 892 (2008) 125–131.