Please do not adjust margins
Organic & Biomolecular Chemistry
Page 6 of 7
ARTICLE
Journal Name
product 19a (Entry 1). This interesting effect suggests that the to be transformed to [Rh(cod)(OH)]2 first. Efforts for further
DOI: 10.1039/C9OB00243J
excellent mono-selectivity of the original protocol (no generalization of our protocol are ongoing in our laboratory.
formation of any bis-alkylation products) is not only
determined by the in-situ formed sterically demanding
ruthenium complex, but also by the size of the olefin. It can be
Conflicts of interest
expected that this specific example will not be unique in this
regard.
There are no conflicts to declare.
Table 1 Reactions were run in two chamber reactor. Chamber A was charged with 0.4-
0.5 mmol 2-phenylpyridine, 5 mol% catalyst and 15 mol% KO2CMes. Chamber B
contained 3.0 – 3.5 equiv. ammonium salt and a threefold amount of KOH. 1 mL
toluene was added to both chambers. Mixtures were heated at 140 °C overnight. a
Literature 78%
Notes and references
1.
2.
3.
4.
F. Roudesly, J. Oble and G. Poli, J. Mol. Catal. A: Chem.,
2017, 426, 275-296.
J. R. Hummel, J. A. Boerth and J. A. Ellman, Chem. Rev.,
2017, 117, 9163-9227.
J. Wencel-Delord, F. W. Patureau and F. Glorius, Top.
Organometal. Chem., 2016, 55, 1-27.
catalysis chamber (A)
R
[Ru(p-cym)Cl2]2
N
M. Moselage, J. Li and L. Ackermann, ACS Catal., 2016, 6,
498-525.
KO2CMes
+
N
N
5.
6.
J. Q. Yu, Adv. Synth. Catal., 2014, 356, 1393-1393.
X. S. Xue, P. Ji, B. Zhou and J. P. Cheng, Chem. Rev., 2017,
117, 8622-8648.
R
R
R
19-23
18
7.
8.
S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M.
Sonoda and N. Chatani, Nature, 1993, 366, 529-531.
C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G.
Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-
Delord, T. Besset, B. U. W. Maes and M. Schnürch, Chem.
Soc. Rev., 2018, 47, 6603-6743.
KOH
Hofmann elimination
chamber (B)
+
NR'4Br
Entry
R
Monoalkylation [%}
Bisalkylation [%]
9.
Z. K. Chen, B. J. Wang, J. T. Zhang, W. L. Yu, Z. X. Liu and Y.
H. Zhang, Org. Chem. Front., 2015, 2, 1107-1295.
Z. Dong, Z. Ren, S. J. Thompson, Y. Xu and G. Dong, Chem.
Rev., 2017, 117, 9333-9403.
F. Kakiuchi, Top. Organometal. Chem., 2007, 24, 1-33.
C. Bruneau and P. H. Dixneuf, Top. Organomet. Chem.,
2016, 55, 137-188.
1
2
3
4
5
H
45 (19a)
65 (20a)
75 (21)
71 (22)
72a (23)
35 (19b)
Me
Et
4 (20b)
10.
0
0
0
11.
12.
n-Pr
n-Bu
13.
R. Pollice, N. Dastbaravardeh, N. Marquise, M. D.
Mihovilovic and M. Schnürch, ACS Catal., 2015, 5, 587-
595.
Conclusions
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
R. Pollice and M. Schnürch, J. Org. Chem., 2015, 80, 8268-
8274.
M. Spettel, R. Pollice and M. Schnürch, Org. Lett., 2017,
19, 4287-4290.
M. Anschuber, R. Pollice and M. Schnurch, Monatsh
Chem, 2019, 150, 127-138.
R. Y. Zhu, J. He, X. C. Wang and J. Q. Yu, J. Am. Chem. Soc.,
2014, 136, 13194-13197.
K. Gao and N. Yoshikai, J. Am. Chem. Soc., 2013, 135,
9279-9282.
B. Xiao, Z. J. Liu, L. Liu and Y. Fu, J. Am. Chem. Soc., 2013,
135, 616-619.
S. Y. Zhang, Q. Li, G. He, W. A. Nack and G. Chen, J. Am.
Chem. Soc., 2013, 135, 12135-12141.
K. Chen and B. F. Shi, Angew. Chem., Int. Ed., 2014, 53,
11950-11954.
Y. Aihara and N. Chatani, J. Am. Chem. Soc., 2013, 135,
5308-5311.
W. Song, S. Lackner and L. Ackermann, Angew. Chem., Int.
Ed., 2014, 53, 2477-2480.
B. M. Monks, E. R. Fruchey and S. P. Cook, Angew. Chem.,
Int. Ed., 2014, 53, 11065-11069.
Z. Dong, Z. Ren, S. J. Thompson, Y. Xu and G. Dong,
Chemical Reviews, 2017, 117, 9333-9403.
In summary it was shown that tetraalkylammonium salts can
be used as solid surrogates for simple unactivated alkenes
using Hofmann elimination for in situ formation of olefins. The
method is especially useful for substituting olefins with up to
five carbons, since these olefins are either gaseous or very low
boiling and hence difficult to handle and dose in small scale.
Even though Hofmann elimination requires excess of KOH, the
protocol could also be applied for catalytic systems
incompatible with strongly basic conditions. Here spatial
separation via a two-vessel approach can solve the problem
and delivers similar yields as the initial literature precedencies
using olefins. Furthermore, it was shown that the alkylation
selectivity between alkenes and 2-phenylpyridine is not only
depending on the catalyst and its additives, but also on chain-
length of the participating olefin: In-situ formed ethylene and
propylene gave mixtures of mono- and bis-alkylation products,
whereas from butylene on the reaction was mono-selective.
Furthermore, the two-vessel approach also allowed the
identification of the catalytically active species of the originally
investigated alkylation reaction of N-benzyl-2-aminopyridines,
by showing that [Rh(cod)Cl]2 is catalytically inactive and needs
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins