of dimesitylboryl groups (3) and cyano groups (4) at the
terminal positions shift the emission to greenish-blue at 473 nm
and bluish-green at 485 nm, respectively. The emission was
further red-shifted to yellowish-green at 515 nm through the
extension of the p-conjugation with formyl groups (5). It is
worth noting that compound 1, without the electron-
withdrawing groups at the terminal positions, emits purple-
blue fluorescence with a relatively low quantum yield (FF = 0.37)
in the solid-state, confirming that the intramolecular CT is an
important factor for the intense solid-state emission.10,11 As
for the fluorescence spectra, compounds 1–4 show very similar
spectra in the spin-coated films to those in benzene solution,
while the emission of 5 in the spin-coated film is more similar
to that in THF solution, suggesting that the environment
arising in the film is comparable to that in the dilute benzene
solution for 1–4 and to that in the more polar THF solution
for 5. It is noteworthy that the intense emissions were also
observed for the powder of these compounds, with quantum
yields in the range 0.38–0.99. While the fluorescence spectra of
the powder of 3 and 4 are very similar to those of the spin-
coated films, the emission spectra of 1 and 5 are greatly blue-
shifted when going from the spin-coated film to the powder
(see ESIw). This probably arises from the significant difference
in the molecular packing pattern between the film and the
powder for 1 and 5.13 Another noticeable characteristic for the
present diphenylamino terphenyls is that the quantum yields
of 1–5 in solution are much lower than those in the solid-state.
Such fluorescence behavior may be ascribed to the easily
exchangeable multiple conformations of the nonplanar structure
of the main chain, which facilitate the non-radiative decay of
the excited state. In the solid-state, the exchanges between
multiple conformations are greatly suppressed due to the
spatial congestion of the molecular stacking in the solid-state.8
In summary, a series of lateral diphenylamino-substituted
terphenyls have been designed and synthesized. Owing to the
influence of steric bulkiness and the electron-donating property
of the lateral diphenylamino group, these terphenyls exhibit a
twisted main chain structure and efficient intramolecular
charge transfer transition with a large Stokes shift, facilitating
the suppression of fluorescence quenching in the solid-state.
They display intense fluorescence with good to excellent
quantum yields mainly in the solid-state. We here disclosed
not only a new kind of emissive materials, but also a new
molecular design concept to attain organic emissive solids with
excellent quantum yields. Further studies on the applicability
of the present molecular design to other p-conjugated systems,
as well as the application of the obtained materials to organic
optoelectronics, are under way.
Notes and references
1 (a) H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials,
Wiely-VCH, Weinheim, 2008; (b) K. Mullen and U. Scherf, Organic
Light-Emitting Devices: Synthesis Properties and Applications, Wiely-
VCH, Weinheim, 2006; (c) R. H. Friend, R. W. Gymer,
A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D.
C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund and
W. R. Salaneck, Nature, 1999, 397, 121.
2 (a) J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296;
(b) F. Cicoira and C. Santato, Adv. Funct. Mater., 2007, 17, 3421.
3 (a) I. D. W. Samuel and G. A. Turnbull, Chem. Rev., 2007,
107, 1272; (b) I. D. W. Samuel and G. A. Turnbull, Mater. Today,
2004, 7, 28; (c) U. Scherf, S. Riechel, U. Lemmer and R. F. Mahrt,
Curr. Opin. Solid State Mater. Sci., 2001, 5, 143;
(d) M. D. McGehee and A. J. Heeger, Adv. Mater., 2000,
12, 1655; (e) G. Kranzelbinder and G. Leising, Rep. Prog. Phys.,
2000, 63, 729; (f) N. Tessler, Adv. Mater., 1999, 11, 363;
(g) V. G. Kozlov and S. R. Forrest, Curr. Opin. Solid State Mater.
Sci., 1999, 4, 203; (h) A. Dodabalapur, E. A. Chandross,
M. Berggren and R. E. Slusher, Science, 1997, 277, 1787.
4 (a) S. Sreejith, K. P. Divya and A. Ajayaghosh, Chem. Commun.,
2008, 2903; (b) M. S. Meaney and V. L. McGuffin, Anal. Bioanal.
Chem., 2008, 391, 2557; (c) S. W. Thomas III, G. D. Joly and
T. M. Swager, Chem. Rev., 2007, 107, 1339; (d) L. Basabe-
Desmonts, D. N. Reinhoudt and M. Crego-Calama, Chem. Soc.
Rev., 2007, 36, 993; (e) T. J. Dale and J. Jr. Rebek, J. Am. Chem.
Soc., 2006, 128, 4500; (f) O. S. Wolfbeis, J. Mater. Chem., 2005,
15, 2657; (g) J. F. Callan, A. P. de Silva and D. C. Magri,
Tetrahedron, 2005, 61, 8551; (h) S.-W. Zhang and T. M. Swager,
J. Am. Chem. Soc., 2003, 125, 3420; (i) R. Martınez-Manez and
F. Sancenon, Chem. Rev., 2003, 103, 4419.
5 For reviews of emissive organic solids, see M. Shimizu and
T. Hiyama, Chem.–Asian J., 2010, 5, 1516.
6 (a) J. Wang, Y. Zhao, C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang,
S. Jiang, F. Li and Y. Wang, J. Phys. Chem. B, 2007, 111, 5082;
(b) T. Sanji, T. Kanzawa and M. Tanaka, J. Organomet. Chem.,
2007, 692, 5053; (c) H. Langhals, O. Krotz, K. Polborn and
P. Mayer, Angew. Chem., Int. Ed., 2005, 44, 2427; (d) T. Sato,
D.-L. Jiang and T. Aida, J. Am. Chem. Soc., 1999, 121, 10658.
7 Z. Xie, B. Yang, F. li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye. M.
Hanif, S. Liu, D. Ma and Y. Ma, J. Am. Chem. Soc., 2005, 127, 14152.
8 (a) Y. Dong, J. W. Y. Lam, A. Qin, J. Sun, J. Liu, Z. Li, J. Sun, H.
H. Y. Sung, I. D. Williams, H. S. Kwok and B. Z. Tang, Chem.
Commun., 2007, 3255; (b) Z. Ning, Z. Chen, Q. Zhang, Y. Yan,
S. Qian, Y. Cao and H. Tian, Adv. Funct. Mater., 2007, 17, 3799;
(c) S. Kim, Q. Zheng, G. S. He, D. J. Bharali, H. E. Pudavar,
A. Baev and P. N. Prasad, Adv. Funct. Mater., 2006, 16, 2317;
(d) H. Tong, Y. Hong, Y. Dong, M. Haußler, J. W. Y. Lam, Z. Li,
Z. Guo, Z. Guo and B. Z. Tang, Chem. Commun., 2006, 3705;
(e) K. Itami, Y. Ohashi and J. Yoshida, J. Org. Chem., 2005,
70, 2778; (f) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen,
C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang,
Chem. Commun., 2001, 1740.
9 T. E. Kaiser, H. Wang, V. Stepanenko and F. Wurthner, Angew.
Chem., Int. Ed., 2007, 46, 5541.
10 (a) C.-H. Zhao, A. Wakamiya, Y. Inukai and S. Yamaguchi,
J. Am. Chem. Soc., 2006, 128, 15934; (b) A. Wakamiya, K. Mori
and S. Yamaguchi, Angew. Chem., Int. Ed., 2007, 46, 4273;
(c) C.-H. Zhao, A. Wakamiya and S. Yamaguchi, Macromolecules,
2007, 40, 3898; (d) C.-H. Zhao, E. Sakuda, A. Wakamiya and
S. Yamaguchi, Chem.–Eur. J., 2009, 15, 10603.
We acknowledge the financial support from the National
Nature Science Foundation of China (Grant Nos. 21072117,
20802041), Nature Science Foundation of Shandong Province
(No Q2008B02), and Science Foundation of Ministry of
Education of China (No 200804221009).
11 M. Shimizu, Y. Takeda, M. Higashi and T. Hiyama, Angew.
Chem., Int. Ed., 2009, 48, 3653.
12 Y. Takahshi, T. Kurata, H. Nishide, C.-H. Lee, E.-D. Do and
J. Jin, Sci. Technol. Adv. Mater., 2006, 7, 475.
13 J. Chen, B. Xu, K. Yang, Y. Cao, H. H. Y. Sung, I. D. Williams
and B. Z. Tang, J. Phys. Chem. B, 2005, 109, 17086.
c
5520 Chem. Commun., 2011, 47, 5518–5520
This journal is The Royal Society of Chemistry 2011