NMR data of methoxylated stilbenes and 1,2-diphenylethanes
Table 1. 1H NMR chemical shifts of the methoxylated stilbene and 1,2-diphenylethane derivatives 1–18 (ppm) in CDCl3 and values in parentheses
are 1H,1H coupling constants J (in Hz)a
Position
1
2
3
4
5
6
7
8
9
2
6.47 (d, 2.2) 6.65 (d, 2.2) 6.39 (d, 2.3) 6.66 (d, 2.2)
6.34 (t, 2.2) 6.38 (d, 2.2) 6.27 (t, 2.3) 6.37 (t, 2.2)
6.43 (d, 2.3)
6.33 (t, 2.3)
6.43 (d, 2.3)
6.61 (d, 12.3)
6.77 (d, 12.3)
–
6.70 (d, 2.2)
6.40 (t, 2.2)
6.70 (d, 2.2)
7.06 (d, 16.3)
7.43 (d, 16.3)
–
6.48 (d, 2.3) 6.69 (d, 2.3) 6.47 (d, 2.3)
6.35 (t, 2.3) 6.42 (t, 2.3) 6.36 (t, 2.3)
4
6
6.47 (d, 2.2) 6.65 (d, 2.2) 6.39 (d, 2.3) 6.66 (d, 2.2)
6.51 (d, 12.2) 6.88 (d, 16.1) 6.49 (d, 12.2) 6.95 (d, 16.5)
6.42 (d, 12.2) 7.02 (d, 16.1) 6.61 (d, 12.2) 7.30 (d, 16.5)
6.48 (d, 2.3) 6.69 (d, 2.3) 6.47 (d, 2.3)
6.47 (d, 12.2) 7.07 (d, 16.3) 6.61 (d, 12.3)
6.55 (d, 12.2) 6.93 (d, 16.3) 6.56 (d, 12.3)
7.24 (d, 8.7) 7.46 (d, 8.7) 6.87 (t, 2.5)
7
8
2ꢁ
3ꢁ
4ꢁ
7.15 (d, 8.5) 7.38 (d, 8.6)
6.78 (d, 8.5) 6.87 (d, 8.6)
–
–
–
–
–
–
–
–
6.79 (d, 8.7) 6.91 (d, 8.7)
–
–
–
6.82
6.84
–
–
6.77
(dd, 1.8, 11.3)
6.90 (t, 7.8)
(dd, 1.3, 8.0)
7.05 (d, 8.0)
(dd, 2.5, 7.9)
5ꢁ
6ꢁ
6.78 (d, 8.5) 6.87 (d, 8.6) 6.47 (d, 8.7) 6.69 (d, 8.8)
6.79 (d, 8.7) 6.91 (d, 8.7) 7.18 (t, 7.9)
7.15 (d, 8.5) 7.38 (d, 8.6) 6.89 (d, 8.7) 7.29 (d, 8.8) 6.84 (dd, 1.8, 11.3) 7.23 (dd, 1.3, 8.0) 7.24 (d, 8.7) 7.46 (d, 8.7) 6.90 (d, 7.9)
3-OMe
5-OMe
2ꢁ-OMe
3ꢁ-OMe
4ꢁ-OH
4ꢁ-OMe
5ꢁ-OMe
3.66 (s)
3.83 (s)
3.62 (s)
3.62 (s)
3.86 (s)
3.86 (s)
–
3.82 (s)
3.82 (s)
3.89 (s)
3.88 (s)
–
3.66 (s)
3.66 (s)
3.87 (s)
3.89 (s)
–
3.84 (s)
3.84 (s)
3.85 (s)
3.88 (s)
–
3.79 (s)
3.83 (s)
3.66 (s)
3.66 (s)
3.83 (s)
3.79 (s)
3.83 (s)
3.66 (s)
–
–
–
–
–
–
–
–
–
3.69 (s)
4.92 (s)
5.02 (s)
–
3.69 (s)
–
–
3.81 (s)
–
–
–
–
–
–
–
–
3.79 (s)
–
3.87 (s)
–
–
–
–
–
Position
10
11
12
13
14
15
16
17
18
2
6.67 (d, 2.2) 6.43 (d, 2.3) 6.69 (d, 2.3) 6.48 (d, 2.3)
6.40 (t, 2.2) 6.31 (t, 2.3) 6.38 (t, 2.3) 6.35 (t, 2.3)
6.67 (d, 2.2) 6.43 (d, 2.3) 6.69 (d, 2.3) 6.48 (d, 2.3)
6.68 (d, 2.3)
6.42 (t, 2.3)
6.68 (d, 2.3)
7.03 (s)
6.34 (d, 2.2)
6.31 (t, 2.2)
6.34 (d, 2.2)
2.84 (m)
2.84 (m)
7.10 (d, 8.5)
6.84
6.36 (d, 2.3) 6.43 (d, 2.3) 6.35 (d, 2.4)
6.33 (t, 2.3) 6.37 (t, 2.3) 6.31 (t, 2.4)
6.36 (d, 2.3) 6.43 (d, 2.3) 6.35 (d, 2.4)
4
6
7
7.06 (d, 16.4) 6.58 (d, 12.2) 7.04 (d, 16.4)
7.01 (d, 16.4) 6.73 (d, 12.2) 7.45 (d, 16.4)
6.56 (s)
6.56 (s)
6.48 (d, 2.3)
–
2.88 (m)
2.89 (m)
6.76 (m)
–
2.89 (m)
2.84 (s)
2.84 (s)
6.35 (d, 2.4)
–
8
7.03 (s)
2.94 (m)
2ꢁ
3ꢁ
7.04 (d, 2.6)
–
–
–
6.68 (d, 2.3)
–
–
6.90
6.89
6.89
(dd, 0.8, 7.8) (dd, 0.7, 7.8)
7.21 7.24
(d, 8.5)
(dd, 1.0, 7.5)
7.23
4ꢁ
5ꢁ
6ꢁ
6.82
6.35
(t, 2.3)
–
6.42
(t, 2.3)
–
–
6.80
(d, 7.5)
7.21
(d, 7.5)
6.74
(m)
6.31
(t, 2.4)
–
(dd, 2.6, 8.1) (dt, 1.7, 7.8) (dt, 1.7, 7.8)
(dt, 1.7, 7.5)
6.92
7.27
(t, 8.1)
7.10
(m)
6.80
(dt, 0.8, 7.8) (dt, 0.7, 7.8)
7.25 7.58
(dd, 1.7, 7.8) (dd, 1.7, 7.8)
6.96
6.84
(d, 8.5)
7.10
(d, 8.5)
3.76 (s)
3.76 (s)
–
(dt, 1.0, 7.5)
7.15
6.48
(d, 2.3)
3.69 (s)
3.69 (s)
–
6.68
(d, 2.3)
3.85 (s)
3.85 (s)
–
6.35
(d, 2.4)
3.76 (s)
3.76 (s)
–
(dd, 1.7, 7.5)
3.80 (s)
3.80 (s)
3.86 (s)
–
3-OMe
5-OMe
2ꢁ-OMe
3ꢁ-OMe
4ꢁ-OH
4ꢁ-OMe
5ꢁ-OMe
3.82 (s)
3.82 (s)
–
3.62 (s)
3.82 (s)
3.76 (s)
3.76 (s)
–
3.62 (s)
3.82 (s)
3.83 (s)
3.88 (s)
3.84 (s)
–
–
–
–
–
–
–
–
–
3.69 (s)
–
3.85 (s)
–
–
3.78 (s)
–
3.76 (s)
–
–
–
–
–
–
3.78 (s)
–
–
–
–
–
3.69 (s)
3.85 (s)
–
–
3.76 (s)
a Signal multiplicities: s, singlet; d, doublet; t, triplet.
Results and Discussion
at δ = 6.39 ppm and the 13C peak at δ = 99.8 ppm observed
in the HMBC spectrum indicated that the 13C peak was C-4.
Two 13C peaks at δ = 126.0 and 130.0 ppm were attached to
The structures and nomenclature of the methoxylated stilbene
and 1,2-diphenylethane derivatives (1–18) are shown in Fig. 1.
Among the 18 compounds, 3, 4, and 5 are novel. The 13C NMR
spectrum for 3 had 16 peaks because of its symmetrical A ring. The
carbon atoms were identified using DEPT experiments. Among
the four quaternary carbons between δ = 55 and 65 ppm, the 13C
peak at δ = 55.4 ppm was assigned to 3-OMe/5-OMe of A-ring
because of its double intensity. C-3/C-5 and C-2/C6 were assigned
in the same manner. H-2/H-6 were identified using HMQC data
1
two H peaks at δ = 6.61 and 6.49 ppm, respectively, and they
were assigned to the carbons of the double bond, C-7 or C-8.
HMBC data showed that the 13C peak at δ = 130.0 ppm was
long-range coupled to H-2/H-6; thus, it was identified as C-7.
The 13C peak at δ = 139.5 ppm showed long-range coupling
with H-8 at δ = 6.61 ppm; thus, it was identified as C-1. In the
same manner, the 1H peak at δ = 6.89 ppm was identified as
H-6ꢁ of the B-ring because it was long-range coupled to C-8.
Based on the interpretation of the COSY data, the 1H peak at
1
(δ = 6.39 ppm). The long-range coupling between the H peak
c
Magn. Reson. Chem. 2011, 49, 374–377
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc