Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
skuwata@apc.titech.ac.jp; tikariya@apc.titech.ac.jp
’ ACKNOWLEDGMENT
This paper is dedicated to the memory of Professor Yasushi
Mizobe. This work was supported by Grants-in-Aid for Scientific
Research on Priority Areas (18065007, “Chemistry of Concerto
Catalysis”) and Scientific Research (S) (22225004) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan, and the JGC-S Scholarship Foundation (S.K.).
Figure 4. Structure of the cationic part of 6. Hydrogen atoms in the Cp*
ligands have been omitted for clarity.
of H2,4 which is less probable for the iridium(III) complex 3. Such
heterolytic cleavage of dihydrogen in dinuclear complexes is also
attractive in relation to hydrogenase enzymes.16
’ REFERENCES
(1) (a) Ertl, G. Angew. Chem., Int. Ed. 2008, 47, 3524. (b) Hoffman,
B. M.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2009, 42, 609.
(c) Dance, I. Dalton Trans. 2010, 39, 2972.
(2) (a) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115.(b) Peters,
J. C.; Mehn, M. P. In Activation of Small Molecules; Tolman, W. B., Ed.;
Wiley-VCH: Weinheim, Germany, 2006; pp 81ꢀ119. (c) Schrock, R. R.
Angew. Chem., Int. Ed. 2008, 47, 5512. (d) Ballmann, J.; Munhꢀa, R. F.;
Fryzuk, M. D. Chem. Commun. 2010, 46, 1013.
The bifunctional metalꢀNH moiety in the dinuclear parent
imido complex 3 also facilitates NꢀH bond cleavage of ammonia
in the manner illustrated in Scheme 1c. As shown in Scheme 3,
treatment of 3 with an equimolar amount of ammonia at room
temperature afforded the parent bis(amido) complex 6 in 44%
isolated yield. The 1H NMR spectrum of 6 displayed two broad
signals at δ ꢀ0.50 and 0.64 with a 2H intensity, which are ascribed
to the exo and endo amido protons. The structure of 6 was deter-
mined by X-ray crystallography (Figure 4). The IrꢀN distances
[2.077(2)ꢀ2.104(2) Å] are consistent with coordinative satura-
tion of the metal centers. Related deprotonative NꢀH cleavage of
ammonia without formal redox of the metal has been docu-
mented for some hydroxo,11 oxo,12 and alkyl25 complexes; how-
ever, the subsequent dissociation of the protonated cooperating
ligands (LH in Scheme 1c) has prevented the catalytic application of
such metalꢀligand bifunctional activation. Quite recently, Milstein
and co-workers26 demonstrated the deprotonative and reversible
NꢀH cleavage of ammonia through metalꢀligand cooperation,
wherein the parent amido intermediate was not directly ob-
served. In solid-surface organometallic chemistry, formation of a
parent amido species from a parent imido ligand and ammonia
on a silica-supported tantalum complex has been reported.27 The
formation of 6 represents the first example of metalꢀligand
bifunctional activation of ammonia in which the produced parent
amido complex has been unambiguously characterized and the
cooperating ligand stays in the coordination sphere throughout
the transformation.
In conclusion, the parent imido-bridged diiridium complex 3
featuring the Lewis acidꢀBrønsted base bifunctionality of the
sterically encumbered MꢀNH bonds promotes heterolysis of
dihydrogen and NꢀH bond cleavage of ammonia to give the
corresponding parent amido complexes under mild conditions.
The facile proton shifts between the reduced nitrogenous ligands
and the dihydrogen molecule observed for the late metal com-
plexes provide insights into the mechanism of nitrogen fixation as
well as the organometallic transformation of ammonia. Further
studies aimed at catalytic reactions of dihydrogen and ammonia
on multimetallic centers furnished with metalꢀligand bifunc-
tionality are in progress.
(3) (a) Cabon, J.-Y.; Le Roy, C.; Muir, K. W.; Pꢀetillon, F. Y.; Quentel,
F.; Schollhammar, P.; Talarmin, J. Chem.—Eur. J. 2000, 6, 3033.
(b) Meyer, T. J.; Huynh, M. H. V. Inorg. Chem. 2003, 42, 8140.
(c) Scepaniak, J. J.; Young, J. A.; Bontchev, R. P.; Smith, J. M. Angew.
Chem., Int. Ed. 2009, 48, 3158. (d) Sch€offel, J.; Rogachev, A. Y.; DeBeer
George, S.; Burger, P. Angew. Chem., Int. Ed. 2009, 48, 4737.
(e) Bowman, A. C.; Bart, S. C.; Heinemann, F. W.; Meyer, K.; Chirik,
P. J. Inorg. Chem. 2009, 48, 5587. (f) Nikiforov, G. B.; Vidyaratne, I.;
Gambarotta, S.; Korobkov, I. Angew. Chem., Int. Ed. 2009, 48, 7415.
(g) Knobloch, D. J.; Lobkovsky, E.; Chirik, P. J. Nat. Chem. 2010, 2, 30.
ꢁ
(h) Sch€offel, J.; Suꢁsnjar, N.; N€uckel, S.; Sieh, D.; Burger, P. Eur. J. Inorg.
Chem. 2010, 4911. (i) Scepaniak, J. J.; Vogel, C. S.; Khusniyarov, M. M.;
Heinemann, F. W.; Meyer, K.; Smith, J. M. Science 2011, 331, 1049.
(j) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nat. Chem. 2011, 3, 120.
(4) Kameo, H.; Nakajima, Y.; Suzuki, H. Eur. J. Inorg. Chem.
2007, 1793.
(5) Caulton, K. G. New J. Chem. 1994, 18, 25.
(6) Li, Y.; Wong, W.-T. Coord. Chem. Rev. 2003, 243, 191.
(7) In the seminal contributions by Peters and co-workers, μ2-NH
diiron complexes supported by bulky tris(phosphino)borate ligands
were isolated from hydrogenation of bridging nitride or NꢀN bond
cleavage of a μ2,η2:η2-N2H2 ligand, although subsequent hydrogenation
and protonation of the parent imido ligands was not achieved. See:
(a) Brown, S. D.; Mehn, M. P.; Peters, J. C. J. Am. Chem. Soc. 2005,
127, 13146. (b) Saouma, C. T.; M€uller, P.; Peters, J. C. J. Am. Chem. Soc.
2009, 131, 10358. For additional examples of terminal and μ2-NH
complexes of late transition metals, see:(c) Lutz, C. M.; Wilson, S. R.;
Shapley, P. A. Organometallics 2005, 24, 3350. (d) Yi, X.-Y.; Ng, H.-Y.;
Williams, I. D.; Leung, W.-H. Inorg. Chem. 2011, 50, 1161.
(8) (a) Klinkenberg, J. L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011,
50, 86. (b) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L.
Chem. Soc. Rev. 2010, 39, 4130. (c) van der Vlugt, J. I. Chem. Soc. Rev.
2010, 39, 2302.
(9) For related hydrazido(1ꢀ) complexes generated by NꢀH bond
cleavage of hydrazine, see: (a) Huang, Z.; Zhou, J.; Hartwig, J. F. J. Am.
Chem. Soc. 2010, 132, 11458. (b) Takei, I.; Dohki, K.; Kobayashi, K.;
Suzuki, T.; Hidai, M. Inorg. Chem. 2005, 44, 3768. (c) Vela, J.; Stoian, S.;
Flaschenriem, C. J.; M€unck, E.; Holland, P. L. J. Am. Chem. Soc. 2004,
126, 4522. (d) Jahncke, M.; Neels, A.; Stoeckli-Evans, H.; S€uss-Fink, G.
J. Organomet. Chem. 1998, 565, 97.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
X-ray crystallographic data for 2, 3 CH2Cl2, 4 2THF, 5, and 6
(CIF). This material is available free of charge via the Internet at
(10) (a) Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005,
307, 1080. (b) Braun, T. Angew. Chem., Int. Ed. 2005, 44, 5012.
(c) Hanna, T. E.; Lobkovsky, E.; Chirik, P. J. Eur. J. Inorg. Chem.
3
3
8882
dx.doi.org/10.1021/ja203538b |J. Am. Chem. Soc. 2011, 133, 8880–8883