of ammonia: J. I. van der Vlugt, Chem. Soc. Rev., 2010,
39, 2302.
4 Selected examples: (a) A. L. Casalnuovo, J. C. Calabrese and
D. Milstein, J. Am. Chem. Soc., 1988, 110, 6738;
(b) A. L. Casalnuovo, J. C. Calabrese and D. Milstein, Inorg.
Chem., 1987, 26, 971; (c) R. Koelliker and D. Milstein,
Angew. Chem., Int. Ed. Engl., 1991, 30, 707; (d) R. Koelliker and
D. Milstein, J. Am. Chem. Soc., 1991, 113, 8524;
(e) M. A. Salomon, A.-K. Jungton and T. Braun, Dalton Trans.,
2009, 7669; (f) C. M. Fafard, D. Adhikari, B. M. Foxman,
D. J. Mindiola and O. V. Ozerov, J. Am. Chem. Soc., 2007, 129,
10318; (g) G. L. Hillhouse and J. E. Bercaw, J. Am. Chem. Soc.,
1984, 106, 5472; (h) J. Zhao, A. S. Goldman and J. F.
Hartwig, Science, 2005, 307, 1080; (i) E. Sappa and L. Milone,
J. Organomet. Chem., 1973, 61, 383; (j) M. Hirano, K. Onuki,
Y. Kimura and S. Komiya, Inorg. Chim. Acta, 2003, 352, 160;
(k) M. Jimenez-Tenorio, M. C. Puerta and P. Valerga, Eur. J.
´
Inorg. Chem., 2005, 2631; (l) For an example of an N-heterocyclic
carbene mediated N–H activation, see: G. D. Frey, V. Lavallo,
B. Donnadieu, W. W. Schoeller and G. Bertrand, Science, 2007,
316, 439.
Fig. 2 Proposed catalytic cycle.
5 Reviews: (a) R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008;
(b) R. Noyori, Adv. Synth. Catal., 2003, 345, 15; (c) R. Noyori and
S. Hachiguchi, Acc. Chem. Res., 1997, 30, 97; (d) S. Kuwata
and T. Ikariya, Dalton Trans., 2010, 39, 2984; (e) T. Ikariya and
A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300; (f) T. Ikariya and
The absolute configuration for product ent-4l was determined
to be R based on the X-ray structure analysis of a derivative.9,10
We tentatively assign an absolute (S)-configuration for all other
products 4a–l assuming an identical mode of enantioselection.
A possible mechanistic scenario starts with bifunctional
N–H activation of the cyclisation precursor 3, in a manner
identical to the N–H activation of tosylamides described for
the stoichiometric reactions (Scheme 1). It is followed by
subsequent transfer of the amidato group onto the prochiral
alkene to give cyclised 4 and regeneration of the active catalyst
(Fig. 2). The transition state should proceed through a cyclic
arrangement including hydrogen bonding15 and is dominated
by steric repulsion between the substituent at the arene ring
of the substrate and the methyl groups at the arene ring of
the ruthenium catalyst. Additional interaction should occur
between the aryl substituent in the diamine backbone and the
ester group, while the remote tosylamido group of the diamine
ligand has no major influence on enantioselection.9
I. D. Gridnev, Chem. Rec., 2009, 9, 106; (g) H. Grutzmacher,
¨
Angew. Chem., Int. Ed., 2008, 47, 1814; (h) J. I. van der Vlugt and
J. N. H. Reek, Angew. Chem., Int. Ed., 2009, 48, 8832;
(i) K. Muniz, Angew. Chem., Int. Ed., 2005, 44, 6622.
6 For a related report on stoichiometric N–H activation of amines:
E. Khaskin, M. A. Iron, L. J. W. Shimon, J. Zhang and
D. Milstein, J. Am. Chem. Soc., 2010, 132, 8542.
7 K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya and R. Noyori,
Angew. Chem., Int. Ed. Engl., 1997, 36, 285.
8 Results on stoichiometric N–H activation are taken from the PhD
Thesis of Jan Streuff, University of Strasbourg, 2008.
9 Please see ESIw for details.
10 CCDC 772672 (2a), CCDC 772673 (2e) and CCDC 7803709.
11 pKa (H2NSO2CH3) = 17.5 (DMSO) and pKa (H2NSO2CF3) = 9.7
(DMSO), F. G. Bordwell and D. Algrim, J. Org. Chem., 1976, 41,
2507.
12 We prefer the denomination as aza-Michael reaction, although the
term hydroamination is usually also encountered for the present
process. (a) For a concise review on hydroamination using
We have developed a new process for transition metal based
bifunctional N–H activation within the coordination sphere of
a defined amido–ruthenium complex, and a first successful
application in enantioselective catalysis was demonstrated.
This work was financially supported by ICREA, ICIQ
Foundation, Deutsche Forschungsgemeinschaft (SFB 624),
Consolider INTECAT 2010 (Project CSD2006-0003) and the
French MESR (fellowship to A.L.).
alternative concepts of transition metal catalysis: T. E. Muller,
¨
K. C. Hultzsch, M. Yus, F. Foubelo and M. Tada, Chem. Rev.,
2008, 108, 3795; For recent reviews on aza-Michael additions:
(b) D. Enders, C. Wang and J. X. Liebich, Chem.–Eur. J., 2009,
15, 11058; (c) P. R. Krishna, A. Sreeshailam and R. Srinivas,
Tetrahedron, 2009, 65, 9657; (d) L.-W. Xu and C.-G. Xia, Eur. J.
Org. Chem., 2005, 633.
13 We are not aware of another enantioselective catalytic synthesis of
this class of amino acids, which constitute the indoline analogue
of b-homoprolines. For a recent catalytic approach to chiral
b-homoprolines: (a) A. Farwick and G. Helmchen, Adv. Synth.
Catal., 2010, 352, 1023; For general synthetic approaches to
b-amino acids: (b) Enantioselective Synthesis of b-Amino Acids,
ed. E. Juaristi and V. A. Soloshonok, Wiley-VCH, Weinheim, 2nd
edn, 2005; (c) D. Seebach, A. K. Beck and D. J. Bierbaum, Chem.
Biodiversity, 2004, 1, 1111.
14 For a related temperature effect in the Michael addition of malonates
to nitroalkenes: M. Watanabe, A. Ikagawa, H. Wang, K. Murata and
T. Ikariya, J. Am. Chem. Soc., 2004, 126, 11148.
15 For a related transition state in metal–ligand bifunctional Michael
addition of malonates to enones: M. Watanabe, K. Murata and
T. Ikariya, J. Am. Chem. Soc., 2003, 125, 7508.
Notes and references
1 (a) A. Ricci, Modern Amination Methods, Wiley-VCH, Weinheim,
2000; (b) A. Ricci, Amino Group Chemistry, Wiley-VCH,
Weinheim, 2007; (c) R. Hili and A. K. Yudin, Nat. Chem. Biol.,
2006, 2, 284.
2 Selected reviews: (a) T. E. Muller and M. Beller, Chem. Rev., 1998,
¨
98, 675; (b) A. R. Muci and S. L. Buchwald, Top. Curr. Chem.,
2002, 219, 131; (c) J. F. Hartwig, Synlett, 2006, 1283.
3 For a highlight on N–H activation, see: (a) T. Braun, Angew.
Chem., Int. Ed., 2005, 44, 5012; (b) For a review on N–H activation
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 4911–4913 4913