T.N. Dinh et al. / Tetrahedron 67 (2011) 3363e3368
3367
under reduced pressure to give 13 (328 mg, 100%) as a white solid.
46.9, 44.4, 34.2, 18.2, 17.9; HRMS (ESI-TOF): 425.1950 ([MþNa]þ);
Rf¼0.11 (70% EtOAc/hexane); mp: 240e241 ꢁC; ½a D21
ꢂ
þ52 (c 1.0,
C23H30NaO6 calcd 425.1940.
CHCl3); IR (neat) 3100, 1508, 1281, 1117, 1081, 1031 cmꢀ1
;
1H NMR
(400 MHz, CDCl3)
d
6.79 (d, J¼8.4 Hz, 1H), 6.74 (d, J¼8.4 Hz, 1H),
4.11. (5aR,1S,6aR,8S,9S,10aS,10bR)-1,8,9-Trimethoxy-8,9-
dimethyl-5a,5a1,6,6a,8,9,10a,10b-octahydrofuro[20,30,40,50:4,5]
phenanthro[2,3-b][1,4]dioxine (7b)
4.77 (d, J¼12.9 Hz, 1H), 4.64e4.60 (m, 2H), 4.11 (td, J¼10.8, 4.1 Hz,
1H), 3.85e3.82 (m, 1H), 3.82 (s, 3H), 3.64 (dd, J¼11.5, 3.6 Hz), 3.56
(dd, J¼11.5, 1.9 Hz, 1H), 3.38 (dd, J¼10.4, 4.7 Hz, 1H), 3.25 (s, 3H),
3.23 (s, 3H), 1.77 (dt, J¼11.5, 3.3 Hz, 1H), 1.66 (q, J¼12.0 Hz, 1H), 1.58
(t, J¼11.3 Hz, 1H), 1.36 (s, 3H), 1.30 (s, 3H); 13C NMR (100 MHz,
In a sealed tube containing 14 (40.6 mg, 0.10 mmol) and zinc
dust (40 mg, 0.61 mmol) in dry THF (1 mL) was added pyridine
(100
m
L, 1.24 mmol). The stirred mixture was cooled to ꢀ10 ꢁC and
CDCl3) d 147.7, 144.8, 132.0, 129.0, 121.2, 111.7, 100.6, 99.8, 86.0, 71.4,
66.2, 63.9, 63.7, 55.9, 48.1, 48.0, 42.2, 42.0, 32.3, 18.1, 17.8; HRMS
titanium(IV) chloride (33 mL, 0.30 mmol) was added dropwise. The
(ESI-TOF): 409.1870 ([MꢀH]ꢀ); C21H29O8 calcd 409.1862.
mixture was then heated at 80 ꢁC for 20 h before being cooled to
room temperature and filtered through a pad of Celite. The filtrate
was diluted with ether (5 mL) and washed sequentially with sat-
urated aqueous NaHCO3 solution, brine and dried over MgSO4.
Evaporation of the solvent under reduced pressure and purification
of the crude product by column chromatography by gradient elu-
tion with ethyl acetate in hexane (0e30%) afforded 7b as a colour-
4.9. (2S,3S,4aR,6S,6aS,11aR,11bS)-2,3,10-Trimethoxy-2,3-
dimethyl-2,3,4a,5,6,6a,11a,11b-octahydrobenzo[b][1,4]dioxino
[2,3-g]benzofuran-6,7-dicarbaldehyde (14)
To a stirred solution of 13 (678 mg, 1.65 mmol) in dichloro-
methane (5.5 mL) at room temperature was added sequentially
tert-butyl alcohol (1.56 mL, 16.4 mmol) and DesseMartin period-
inane (15 mL of 0.3 M solution in dichloromethane, 4.5 mmol).
After stirring for 3 h, saturated aqueous sodium hydrogen carbon-
ate (20 mL) and saturated aqueous sodium thiosulfate (20 mL)
were added to the mixture, which was extracted with dichloro-
methane (2ꢃ20 mL). The organic layer was washed with water and
dried over MgSO4. The solvent was evaporated under reduced
pressure and the residue was purified by silica gel column by gra-
dient elution with ethyl acetate in hexane (0e30%) to give 14
(420 mg, 63%) as a white solid. Rf¼0.38 (50% EtOAc/hexane); mp:
less film (20 mg, 53%). Rf¼0.45 (30% EtOAc/hexane); ½a D19
ꢂ
ꢀ91 (c 1.0,
CHCl3); IR (neat) 1499, 1436, 1262, 1117, 1045 cmꢀ1
;
1H NMR
(400 MHz, CDCl3)
d
6.69 (d, J¼8.0 Hz, 1H), 6.62 (d, J¼8.0 Hz, 1H),
6.58 (dd, J¼9.1, 2.9 Hz, 1H), 5.92 (dd, J¼9.1, 2.7 Hz, 1H), 4.89e4.86
(m, 1H), 4.13 (dd, J¼10.3, 6.1 Hz, 1H), 3.86 (s, 3H), 3.83 (dd, J¼10.3,
7.0 Hz, 1H), 3.32 (s, 3H), 3.20 (s, 3H), 2.96 (dd, J¼14.6, 7.6 Hz, 1H),
1.96e1.87 (m, 1H), 1.82 (dt, J¼11.8, 3.3 Hz, 1H), 1.56e1.50 (m, 1H),
1.38 (s, 3H), 1.30 (s, 3H); 13C NMR (100 MHz, CDCl3)
d 145.4, 144.7,
133.1, 132.2, 128.0, 126.8, 118.2, 112.7, 100.9, 100.0, 81.0, 72.4, 69.4,
56.4, 48.3, 47.9, 44.7, 40.5, 30.8, 18.1, 17.8; HRMS (ESI-TOF): 397.1629
([MþNa]þ); C21H26NaO6 calcd 397.1627.
235e236 ꢁC; ½a 2D0
ꢀ18.2 (c 1.06, CHCl3); IR (neat) 1728, 1714, 1683,
ꢂ
Acknowledgements
1612, 1580, 1434, 1294, 1145, 1084 cmꢀ1; 1H NMR (400 MHz, CDCl3)
d
9.77 (s, 1H), 9.58 (d, J¼4.2 Hz, 1H), 7.34 (d, J¼8.4 Hz, 1H), 6.92 (d,
We thank Dr. Aitipamula Srinivasulu (ICES) and Ms. Chia Sze
Chen (ICES) for X-ray crystallographic analysis. Financial support
for this work was provided by Agency for Science, Technology and
J¼8.4 Hz, 1H), 4.77 (dd, J¼5.4, 3.7 Hz, 1H), 4.14e4.12 (m, 1H),
4.11e4.09 (m, 1H), 3.96e3.92 (m, 1H), 3.94 (s, 3H), 3.28 (s, 3H), 3.25
(s, 3H), 2.28 (ddt, J¼13.0, 10.3, 4.2 Hz, 1H), 1.85 (dt, J¼13.0, 4.2 Hz,
1H), 1.72 (q, J¼12.1 Hz, 1H), 1.39 (s, 3H), 1.31 (s, 3H); 13C NMR
Research (A STAR), Singapore.
*
(100 MHz, CDCl3)
d 200.5, 191.4, 150.3, 148.2, 131.2, 129.3, 125.0,
Supplementary data
111.3, 100.5, 99.8, 85.3, 70.3, 64.4, 55.9, 53.1, 48.0, 47.9, 41.2, 28.3,
17.7, 17.6; HRMS (ESI-TOF): 407.1701 ([MþH]þ); C21H27O8 calcd
407.1700 and 429.1518 ([MþNa]þ); C21H26NaO8 calcd 429.1525.
Supplementary data associated with this article can be found in
clude MOL files and InChIKeys of the most important compounds
described in this article.
4.10. (2S,3S,4aR,6R,6aS,11aR,11bS)-2,3,10-Trimethoxy-2,3-
dimethyl-6,7-divinyl-2,3,4a,5,6,6a,11a,11b-octahydrobenzo[b]
[1,4]dioxino[2,3-g]benzofuran (15)
References and notes
1. (a) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem. 2007, 72, 4293e4305; (b) Lee, J.
H.; Zhang, Y.; Danishfsky, S. J. J. Am. Chem. Soc. 2010, 132, 14330e14333.
2. (a) Corey, E. J. Pure Appl. Chem. 1967, 19e37; (b) Corey, E. J.; Wipke, W. T. Science
1969, 166, 178e192; (c) Corey, E. J. Angew. Chem., Int. Ed. Engl. 1991, 30,
455e612; (d) Corey, E. J.; Cheng, X.-M. The Logic of Chemical Synthesis; Wiley-
VCH: New York, NY, 1995.
To
a suspension of methyltriphenylphosphonium bromide
(257 mg, 0.72 mmol) in THF (10 mL) was added LiHMDS (0.72 mL of
a 1.0 M solution in THF, 0.72 mmol) at room temperature. After
30 min, 14 (98 mg, 0.24 mmol) was added quickly in one portion
and the reaction mixture was stirred overnight. The mixture was
quenched with saturated aqueous NH4Cl solution (10 mL) and
extracted with EtOAc (3ꢃ20 mL). The combined organic layers
were dried over MgSO4, evaporated under reduced pressure and
the crude product was purified by column chromatography by
gradient elution with ethyl acetate in hexane (0e10%) to afford 15
(41.7 mg, 43%) as a white solid. Rf¼0.52 (30% EtOAc/hexane); mp:
3. For reviews see: (a) Hudlicky, T.; Butora, G.; Fearnley, S. P.; Gum, A. G.; Stabile,
M. A Historic Perspective of Morphine Synthesis, In Studies in Natural Products
Chemistry, Vol. 18; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1996, pp
43e154; (b) Blakemore, P. R.; White, J. D. Chem. Commun. 2002, 1159e1168; (c)
Hudlicky, T.; Zezula, J. Synlett 2005, 388e405; For total and formal syntheses of
morphine and morphine-like alkaloids: (d) Gates, M.; Tschudi, G. J. Am. Chem.
Soc. 1952, 74, 1109e1110; (e) Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78,
1380e1393; (f) Elad, D.; Ginsburg, D. J. Am. Chem. Soc. 1954, 76, 312e313; (g)
Grewe, R.; Fischer, H. Chem. Ber. 1963, 96, 1520e1528; (h) Grewe, R.; Frie-
drichsen, W. Chem. Ber. 1967, 100, 1550e1558; (i) Barton, D. H. R.; Bhakuni, D. S.;
James, R.; Kirby, G. W. J. Chem. Soc. C 1967, 128e132; (j) Morrison, G. C.; Waite,
R. O.; Shavel, J., Jr. Tetrahedron Lett. 1967, 8, 4055e4056; (k) Kametani, T.; Ihara,
M.; Fukumoto, K.; Yagi, H. J. Chem. Soc. C 1969, 2030e2033; (l) Schwartz, M. A.;
Mami, I. S. J. Am. Chem. Soc. 1975, 97, 1239e1240; (m) Beyerman, H. C.; Lie, T. S.;
Maat, M.; Bosman, H. H.; Buurman, E.; Bijsterveld, E. J. M. Recl. Trav. Chim. Pays-
Bas 1976, 95, 24e25; (n) Lie, T. S.; Maat, L.; Beyerman, H. C. Recl. Trav. Chim.
Pays-Bas 1979, 98, 419e420; (o) Rice, K. C. J. Org. Chem. 1980, 45, 3135e3137;
(p) Evans, D. A.; Mitch, C. H. Tetrahedron Lett. 1982, 285e288; (q) Moos, W. H.;
Gless, R. D.; Rapoport, H. J. Org. Chem. 1983, 48, 227e238; (r) White, J. D.;
Caravatti, G.; Kline, T. B.; Edstrom, E.; Rice, K. C.; Brossi, A. Tetrahedron 1983, 39,
165e166 ꢁC; 1H NMR (400 MHz,)
d
7.10 (d, J¼8.6 Hz, 1H), 6.77 (d,
J¼8.6 Hz, 1H), 6.64 (dd, J¼17.6, 11.0 Hz, 1H), 5.86e5.78 (m, 1H), 5.57
(dd, J¼17.6, 1.1 Hz, 1H), 5.11 (dd, J¼11.0, 1.1 Hz, 1H), 4.97 (d,
J¼10.3 Hz, 1H), 4.89 (dt, J¼17.1, 1.1 Hz, 1H), 4.65e4.58 (m, 1H), 4.12
(ddd, J¼11.6, 10.3, 3.7 Hz, 1H), 3.90 (dd, J¼10.3, 3.7 Hz, 1H), 3.87 (s,
3H), 3.28 (s, 3H), 3.27 (s, 3H), 3.00 (dd, J¼10.3, 4.8 Hz, 1H), 1.83 (dt,
J¼12.7, 3.7 Hz, 1H), 1.56 (q, J¼12.7 Hz, 1H), 1.39 (s, 3H), 1.32 (s, 3H);
13C NMR (100 MHz, CDCl3)
d
147.1, 144.9, 139.9, 135.1, 132.1, 126.6,
117.8, 116.1, 112.3, 112.0, 100.6, 99.8, 85.5, 71.4, 65.7, 55.9, 48.1, 48.0,