2007, 19, 1439; (i) P. Avouris, M. Freitag and V. Perebeinos, Nat.
Photonics, 2008, 2, 341; (j) T. Umeyama and H. Imahori, Energy
Environ. Sci., 2008, 1, 120; (k) V. Sgobba and D. M. Guldi, Chem.
Soc. Rev., 2009, 38, 165.
significant or only a minor role in impacting the charge transfer
properties.
4 (a) Y. Saito and S. Uemura, Carbon, 2000, 38, 169; (b) A. Kuznetsova,
I. Popova, J. T. Yates, Jr, M. J. Bronikowski, M. C. B. Huffman,
J. Liu, R. E. Smalley, H. H. Hwu and J. G. Chen, J. Am. Chem.
Soc., 2001, 123, 10699; (c) W. Huang, Y. Lin, S. Taylor, J. Gaillard,
A. M. Rao and Y.-P. Sun, Nano Lett., 2002, 2, 231; (d) J. Zhang,
H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo and Z. Du, J.
Phys. Chem. B, 2003, 107, 3712; (e) S. Bellucci, Phys. Status Solidi
C, 2005, 2, 34; (f) S. Osswald, E. Flahaut and Y. Gogotsi, Chem.
Mater., 2006, 18, 1525; (g) A. Lucas, C. Zakri, M. Maugey,
M. Pasquali, P. van der Schoot and P. Puolin, J. Phys. Chem. C,
2009, 113, 20599.
5 (a) N. Nakashima, Y. Tomonari and H. Murakami, Chem. Lett.,
2002, 31, 638; (b) A. Star, Y. Liu, K. Grant, L. Ridvan,
J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai and
J. R. Heath, Macromolecules, 2003, 36, 553; (c) J. Zhang, J.-K. Lee,
Y. Wu and R. W. Murray, Nano Lett., 2003, 3, 403; (d)
H. Murakami, T. Nomura and N. Nakashima, Chem. Phys. Lett.,
2003, 378, 481; (e) D. M. Guldi, G. M. A. Rahman, V. Sgobba and
C. Ehli, Chem. Soc. Rev., 2006, 35, 471; (f) D. Tasis,
N. Tagmatarchis, A. Bianco and M. Prato, Chem. Rev., 2006, 106,
1105; (g) H. Murakami and N. Nakashima, J. Nanosci.
Nanotechnol., 2006, 6, 16; (h) C. Ehli, C. Oelsner, D. M. Guldi,
A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke and
A. Hirsch, Nat. Chem., 2009, 1, 243; (i) A. S. D. Sandanayaka,
E. Maligaspe, T. Hasobe, O. Ito and F. D’Souza, Chem. Commun.,
2010, 46, 8749.
Conclusions
In summary, we have developed a novel synthetic route of a key
diformylphthalocyanine 6 as a monomer for the preparation of
conjugated PPV oligomers having the Pc connected to the
conjugated backbone through a flexible spacer. With the
comparative study among oligomers of different lengths,
p/n-type character, and separation between the Pc and the
conjugated backbone, we have documented the interactions of
ZnPc–PPV oligomers with the surface of SWNT. We were able to
show that either electronic modifications (1) or implementation
of structural flexibility (2) in simple ZnPc–PPV oligomers is
indispensable to realize highly concentrated and stable SWNT
suspensions. On the contrary, oligomers of a varied number of
repeat units did not show significant differences regarding the
stability of the suspensions. When inspecting, however, the
quenching of the SWNT fluorescence in the near-infrared
the length of the ZnPc–PPV oligomer (3–5) matters. In parti-
cular, shorter oligomers cover more of the SWNT surface leading
to a stronger SWNT fluorescence quenching. The structurally
modified oligomers, such as 1 and 2, reveal the strongest SWNT
fluorescence quenching. This is primarily due to facilitated
immobilization onto SWNT, that is either based on n-type/p-type
interactions in the case of 1 or the structural flexibility in the case
of 2. Time-resolved transient absorption measurements verified
charge transfer that evolves from the photoexcited ZnPc to
SWNT yielding a 100 ps stable charge transfer product. In terms
of charge transfer, the nature of the PPV backbone has at best
a minor role.
6 (a) M. Shim, A. Javey, N. W. S. Kam and H. Dai, J. Am. Chem. Soc.,
2001, 123, 11512; (b) J. Chen, H. Liu, W. A. Weimer, M. D. Halls,
D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc., 2002, 124,
9034; (c) Z. Li, V. Saini, E. Dervishi, V. P. Kunets, J. Zhang,
Y. Xu, A. R. Biris, G. J. Salamo and A. S. Biris, Appl. Phys. Lett.,
2010, 96, 033110.
7 (a) G. de la Torre, C. G. Claessens and T. Torres, Chem. Commun.,
2007, 2000; (b) C. G. Claessens, U. Hahn and T. Torres, Chem.
ꢀ
Rec., 2008, 8, 75; (c) Y. Rio, M. S. Rodrıguez-Morgade and
T. Torres, Org. Biomol. Chem., 2008, 6, 1877; (d) G. de la Torre,
G. Bottari, U. Hahn and T. Torres, Struct. Bonding, 2010, 135, 1;
(e) J. Mack and N. Kobayashi, Chem. Rev., 2011, 111, 281.
8 (a) J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, Appl. Phys. Lett.,
2004, 84, 3013; (b) K. Suemori, T. Miyata, M. Yokoyama and
M. Hiramoto, Appl. Phys. Lett., 2005, 86, 063509; (c) J.-J. Cid, J.-
Acknowledgements
Financial support from the DFG (GU 517/4-2 and Cluster of
Excellence), the MICINN and MEC, Spain (CTQ2008-00418/
BQU, CONSOLIDER-INGENIO 2010 CDS 2007-00010
Nanociencia Molecular, PLE2009-0070), COST Action D35,
ꢀ
H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Martınez-Ferrero,
E. Palomares, J. Ko, M. Gratzel and T. Torres, Angew. Chem., Int.
€
ꢀ
Ed., 2007, 46, 8358; (d) J.-J. Cid, M. Garcıa-Iglesias, J.-H. Yum,
ꢀ
ꢀ
€
A. Forneli, J. Albero, E. Martınez-Ferrero, P. Vazquez, M. Gratzel,
Md. K. Nazeeruddin, E. Palomares and T. Torres, Chem.–Eur. J.,
2009, 15, 5130; (e) B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-
and
CAM
(MADRISOLAR-2,
S2009/PPQ/1533)
is
acknowledged.
ꢀ
H. Yum, P. Comte, T. Torres, J. M. J. Frechet,
M. K. Nazeeruddin, M. Gratzel and M. D. McGehee, Nat.
€
ꢀ
Photonics, 2009, 3, 406; (f) M. V. Martınez-Dıaz, G. de la Torre
and T. Torres, Chem. Commun., 2010, 46, 7090; (g) B. E. Hardin,
ꢀ
References
ꢀ
J.-H. Yum, E. T. Hoke, Y. C. Jun, P. Pechy, T. Torres,
M. L. Brongersma, Md. K. Nazeeruddin, M. Gratzel and
M. McGehee, Nano Lett., 2010, 10, 3077; (h) K. Driscoll, J. Fang,
N. Humphry-Baker, T. Torres, W. T. S. Huck, H. J. Snaith and
1 (a) S. Iijima, Nature, 1991, 354, 56; (b) S. Niyogi, M. A. Hamon,
H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis and
R. C. Haddon, Acc. Chem. Res., 2002, 35, 1105; (c) H. Dai, Acc.
Chem. Res., 2002, 35, 1035; (d) E. T. Thostenson, C. Li and T.-
W. Chou, Compos. Sci. Technol., 2005, 65, 491.
€
ꢀ
R. H. Friend, Nano Lett., 2010, 10, 4981; (i) M. Garcıa-Iglesias, J.-
J. Cid, J.-H. Yum, A. Forneli, P. Vazquez, Md. K. Nazeeruddin,
ꢀ
2 P. Diao and Z. Liu, Adv. Mater., 2010, 22, 1430.
€
E. Palomares, M. Gratzel and T. Torres, Energy Environ. Sci., 2011,
4, 189.
3 (a) D. M. Guldi, G. M. A. Rahman, F. Zerbetto and M. Prato, Acc.
Chem. Res., 2005, 38, 871; (b) D. M. Guldi, G. M. A. Rahman,
V. Sgobba, N. A. Kotov, D. Bonifazi and M. Prato, J. Am. Chem.
Soc., 2006, 128, 2315; (c) V. Sgobba, G. M. A. Rahman,
D. M. Guldi, N. Jux, S. Campidelli and M. Prato, Adv. Mater.,
2006, 18, 2264; (d) C. Ehli, G. M. A. Rahman, N. Jux, D. Balbinot,
D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle-
Franco, F. Zerbetto, S. Campidelli and M. Prato, J. Am. Chem.
Soc., 2006, 128, 11222; (e) R. Chitta, A. S. D. Sandanayaka,
A. L. Schumacher, L. D’Souza, Y. Araki, O. Ito and F. D’Souza, J.
Phys. Chem. C, 2007, 111, 6947; (f) A. Kongkanand,
9 (a) B. Ballesteros, S. Campidelli, G. de la Torre, C. Ehli, D. M. Guldi,
M. Prato and T. Torres, Chem. Commun., 2007, 2950; (b)
B. Ballesteros, G. de la Torre, C. Ehli, G. M. A. Rahman,
F. Agullo-Rueda, D. M. Guldi and T. Torres, J. Am. Chem. Soc.,
2007, 129, 5061; (c) S. Campidelli, B. Ballesteros, A. Filoramo,
ꢀ
ꢀ
D. Dıaz-Dıaz, G. de la Torre, T. Torres, G. M. A. Rahman,
C. Ehli, D. Kiessling, F. Werner, V. Sgobba, D. M. Guldi,
C. Cioffi, M. Prato and J.-P. Bourgoin, J. Am. Chem. Soc., 2008,
ꢀ
130, 11503; (d) K. H. Le Ho, L. Rivier, B. Jousselme, P. Jegou,
A. Filoramo and S. Campidelli, Chem. Commun., 2010, 46, 8731; (e)
G. Bottari, G. de la Torre, D. M. Guldi and T. Torres, Chem. Rev.,
2010, 110, 6768.
ꢀ
R. M. Domınguez and P. V. Kamat, Nano Lett., 2007, 7, 676; (g)
P. Avouris, Z. Chen and V. Perebeinos, Nat. Nanotechnol., 2007, 2,
605; (h) B. L. Allen, P. D. Kichambare and A. Star, Adv. Mater.,
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 8014–8020 | 8019