Kobayashi11 groups. More recently, Miyashita and co-
workers also reported the total synthesis of zoanthenol via
oxidation of norzoanthamine hydrochloride.12
enantioselectively.13 It should be noted that in a previous
study we attempted the synthesis of the ABC ring fragment
of 1 using bicyclic motif 7b that was readily available from
condensation of 8 with 9b.14 However, implementation of
this strategy to an enantioselective synthesis of 7b proved
to be lengthy and inefficient.15
Figure 1. Structures of selected zoanthamine natural products.
Inspection of the polycyclic norzoanthamine framework
suggests that this compound can be dissected in two main
fragments: a rigid tricyclic ABC core and a bisaminal motif
that forms the DEFG part. Arguably, the most significant
challenges for the synthesis of 2 are the construction of the
AB trans decalin system and the functionalization of the
stereochemically rich C ring. In fact, both Miyashita and
Kobayashi have shown that the synthesis of 2 could be
achieved from condensation of compound 4 in which a
partially folded C1ꢀC8 side chain has been attached to a
fully functionalized ABC motif (Figure 2). With this in
mind, we focused our efforts on the development of an
enantioselective synthesis of the ABC ring fragment, re-
presented here by structure 5. In the retrosynthetic direc-
tion, 5 can derive from 6 after functionalization at the
periphery of the C ring and stereocontrolled installation of
the C9 methyl group. Construction of the carbon back-
bone of 6 could be accomplished with two Robinson
annulation reactions that would form rings A and C.
Along these lines, reaction between 8 and 9a promoted
by a chiral reagent would produce bicyclic motif 7a
Figure 2. Retrosynthetic analysis of norzoanthamine (2).
The synthesis of the BC ring system of 2 is shown in
Scheme 1. Compound 10, the required precursor for the
asymmetric Robinson annulation, was produced in high
yield after Michael addition of 2-methyl-1,3-cyclohexa-
dione (8) to enone 9a. The latter was synthesized from
butane-1,4-diol according to a reported protocol.16 Treat-
ment of 10 with D-Phe and R-CSA in DMF17 gave the
annulated product 7a, containing the C12 quaternary
center, in 75% yield. The enantioselectivity of this reaction
was 85% ee as determined by the chiral shift agent Eu-
(hfc)3.18 The C13 carbonyl group of 7a was selectively
(8) For a comprehensive review of the chemistry and biology of
zoanthamines, see: Behenna, D. C.; Stockdill, J. L.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2008, 47, 2365–2386.
(9) For representative publications from each group, see: (a) Juhl,
M.; Monrad, R.; Sotofte, I.; Tanner, D. J. Org. Chem. 2007, 72, 4644–
4654. (b) Irifune, T.; Ohashi, T.; Ichino, T.; Sakai, E.; Suenaga, K.;
Uemura, D. Chem. Lett. 2005, 34, 1058–1059. (c) Rivas, F.; Ghosh, S.;
Theodorakis, E. A. Tetrahedron Lett. 2005, 46, 5281–5284. (d) Williams,
D. R.; Patnaik, S.; Cortez, G. S. Heterocycles 2007, 72, 213–219. (h)
Hirai, G.; Oguri, H.; Hirama, M. Chem. Lett. 1999, 141–142. (i)
Behenna, D. C.; Stockdill, J. L.; Stoltz, B. M. Angew. Chem., Int. Ed.
2007, 46, 4077–4080.
(14) Ghosh, S.; Rivas, F.; Fischer, D.; Gonzalez, M. A.; Theodorakis,
E. A. Org. Lett. 2004, 6, 941–944.
(10) (a) Miyashita, M.; Sasaki, M.; Hattori, I.; Sakai, M.; Tanino, K.
Science 2004, 305, 495–499. (b) Miyashita, M. Pure Appl. Chem. 2007,
79, 651–665. (c) Yoshimura, F.; Sasaki, M.; Hattori, I.; Komatsu, K.;
Sakai, M.; Tanino, K.; Miyashita, M. Chem.;Eur. J. 2009, 15, 6626–
6644.
(11) (a) Murata, Y.; Yamashita, D.; Kitahara, K.; Minasako, Y.;
Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2009, 48, 1400–
1403. (b) Yamashita, D.; Murata, Y.; Hikage, N.; Takao, K. I.; Nakazaki,
A.; Kobayashi, S. Angew. Chem., Int. Ed. 2009, 48, 1404–1406.
(12) Takahashi, Y.; Yoshimutra, F.; Tanino, K.; Miyashita, M.
Angew. Chem., Int. Ed. 2009, 48, 8905–8908.
(15) (a) Ling, T.; Kramer, B. A.; Palladino, M. A.; Theodorakis,
E. A. Org. Lett. 2000, 2, 2073–2076. (b) Ling, T.; Chowdhury, C;
Kramer, B. A.; Vong, B. G.; Palladino, M. A.; Theodorakis, E. A. J.
Org. Chem. 2001, 66, 8843–8853.
(16) Iyengar, R.; Schildknegt, K.; Morton, M.; Aube, J. J. Org.
Chem. 2005, 70, 10645–10652.
(17) (a) Tamai, Y.; Mizutani, Y.; Hagiwara, H.; Uda, H.; Harada, N.
J. Chem. Res., Synop. 1985, 148–149. (b) Hagiwara, H.; Uda, H. J. Org.
Chem. 1988, 53, 2308–2311.
(18) (a) Goering, H. L.; Eikenberry, J. N.; Koermer, G. S. J. Am.
Chem. Soc. 1971, 93, 5913–5914. (b) Corey, E. J.; Virgil, S. C. J. Am.
Chem. Soc. 1990, 112, 6429–6431. (c) Calmes, M.; Daunis, J.; Jacquier,
R.; Verducci, J. Tetrahedron 1987, 43, 2285–2292.
(13) For a review of annulation chemistry, see: Jung, M. E. Tetra-
hedron 1976, 32, 3–31.
Org. Lett., Vol. 13, No. 13, 2011
3309