2766
J. Kim et al. / Tetrahedron Letters 52 (2011) 2764–2766
with the parent ladder-type pentaphenylene-based dyes, the bath-
ochromic shift of the absorption spectrum is achieved by introduc-
tion of thiophenes as electron-rich groups. A maximum value of
2.31% is reached under AM 1.5 irradiation (100 mW cmꢀ2) with a
70
60
50
40
30
20
10
0
g
DSSC based on the thiophene-fused coplanar sensitizer
7
(Jsc = 7.3 mA cmꢀ2, Voc = 0.53 V, and FF = 60.3%). Although the effi-
ciency of the resulting rigid coplanar dye molecule has somewhat
lower relative to other dyes such as Ru-complex and other metal-
free organic dyes, this work has launched the heteroaromatic-
fused molecular structure into the possibility of sensitizers based
on
p-spacer bridged donors and acceptors. We believe that the
300
400
500
600
700
800
development of highly efficient organic sensitizers is possible
through sophisticated structural modification based on the lad-
der-type heteroaromatic dyes, and work on these is now in
progress.
Wavelength (nm)
Figure 3. IPCE spectrum for dye-sensitized solar cell based on thiophene-fused
coplanar sensitizer 7.
Acknowledgments
8
6
4
2
0
This work was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (2010-
0002494) and the National Research Foundation of Korea Grant
funded by the Korean Government (MEST) (2010-0019408),
(2010-0026916), (2010-0026163), and (2010-0026163).
Supplementary data
0.0
0.1
0.2
0.3
Voltage (V)
0.4
0.5
0.6
Supplementary data associated with this article can be found, in
Figure 4. J–V curve obtained with dye-sensitized solar cell based on thiophene-
fused coplanar sensitizer 7 under AM 1.5 irradiation (100 mW cmꢀ2).
References and notes
1. Grätzel, M. Nature 2001, 414, 338.
2. O’regan, B.; Grätzel, M. Nature 1991, 353, 737.
The solar energy-to-electricity conversion efficiency,
der white-light irradiation (e.g., AM 1.5G) can be obtained from
the following equation:
g (%) un-
3. Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska,
P.; Vlachopoulos, N.; Shklover, V.; Fischer, C. H.; Grätzel, M. Inorg. Chem. 1999,
38, 6298.
4. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Müller, E.; Liska, P.;
Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
5. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-
Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.;
Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
6. Zhou, G.; Pschirer, N.; Schoneboom, J. C.; Eickemeyer, F.; Baumgarten, M.;
Müllen, K. Chem. Mater. 2008, 20, 1808.
g
¼ ðJsc ꢁ Voc ꢁ FFÞ ꢁ 100=I0
ð1Þ
where I0 (mW cmꢀ2) is the photon flux (100 mW cmꢀ2 for AM
1.5G), Jsc (mA cmꢀ2) is the short-circuit current density under irra-
diation, Voc (V) is the open-circuit voltage, and FF represents the fill
factor. As depicted in Figure 4, a
Voc = 0.53 V, and FF = 60.3%) is obtained with the DSSC based on 7
g ,
value of 2.31% (Jsc = 7.3 mA cmꢀ2
7. Park, J. K.; Lee, H. R.; Chen, J. P.; Shinokubo, H.; Osuka, A.; Kim, D. J. Phys. Chem.
C 2008, 112, 16691.
8. Wang, Z. S.; Li, F. Y.; Huang, C. H. Chem. Commun. 2000, 2063.
9. Anthony, J. E. Chem. Rev. 2006, 106, 5028.
10. Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891.
11. Watson, M. D.; Fechtenkötter, A.; Müllen, K. Chem. Rev. 2001, 101, 1267.
12. Scherf, U. J. Mater. Chem. 1999, 9, 1853.
13. Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc. 2008, 130,
12828.
14. Roncali, J. Macromol. Rapid Commun. 2007, 28, 1761.
15. Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.; Yu, L. P. J. Am. Chem.
Soc. 2009, 131, 56.
16. Ando, S.; Nishida, J. I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem.
Soc. 2005, 127, 5336.
17. Bredas, J. L.; Calbert, J. P.; da Silva, D. A.; Cornil, J. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 5804.
18. Li, C.; Liu, M.; Pschirer, N. G.; Baumgarten, M.; Müllen, K. Chem. Rev. 2010, 110,
6817.
under AM 1.5 solar condition.
By considering the high molar extinction coefficient and the
broad absorption of the dye 7 in our experiments, the further en-
hanced device performance could be expected. The low perfor-
mance of DSSCs based on the dye 7 is mainly due to the low
current value, which can be the result of the relatively decreased
IPCE. Although the efficiency of the dye 7 still needs to be further
improved with respect to high-end applications, the preliminary
result can be comparable with or better than those of the opti-
mized performance of DSSCs constructed with the parent ladder-
type pentaphenylene-based dyes (g = 1.1–2.3%). We are currently
studying the molecular structures of the further extended thio-
phene-fused coplanar sensitizers to help us better understand
the DSSCs based on heteroaromatic fused molecular structures.
In summary, a novel ladder-type donor (D)-p-spacer-acceptor
(A) heteroaromatic dye is synthesized as a photosensitizer for DSSC
19. Majo, V. J.; Perumal, P. T. J. Org. Chem. 1996, 61, 6523.
20. Hara, K.; Wang, Z. S.; Sato, T.; Furube, A.; Katoh, R.; Sugihara, H.; Dan-Oh, Y.;
Kasada, C.; Shinpo, A.; Suga, S. J. Phys. Chem. B 2005, 109, 15476.
21. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T. Q.;
Yanagida, S. Chem. Mater. 2004, 16, 1806.
22. Chen, R. K.; Yang, X. C.; Tian, H. N.; Wang, X. N.; Hagfeldt, A.; Sun, L. C. Chem.
Mater. 2007, 19, 4007.
23. Kang, M. G.; Kim, K. M.; Ryu, K. S.; Chang, S. H.; Park, N. G.; Hong, J. S.; Kim, K. J.
J. Electrochem. Soc. 2004, 151, E257.
applications in which the thiophene-fused coplanar building block
serves as a
p-conjugated electron spacer. The electron-donating
moiety is substituted to N,N-dimethylaniline, and the electron-
24. Kusama, H.; Arakawa, H. J. Photochem. Photobiol., A, Chem. 2004, 164, 103.
withdrawing part/anchor is 2-cyanoacrylic acid. In comparison