New π-Extended Metalloporphyrins
H, Hnaphth), 8.53, 8.13, 7.72, and 7.54 (4 m, 4 H, Hnaphth), 8.68,
CCDC-741936 contains the supplementary crystallographic data
8.45, 7.74, and 7.73 (4 m, 4 H, Hquin), 7.78–7.83 (m, 4 H, Hortho), for H2-6. These data can be obtained free of charge from The Cam-
7.57–7.63 (m, 6 H, Hmeta+para) ppm. UV/Vis (CH2Cl2): λmax (ε) =
bridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
401 (57000), 469 (85000), 668 (20000), 696 (24000), 734
(36000 –1 cm–1) nm. HRMS: calcd. for C45H25N5Ni
+
H+
Supporting Information (see also the footnote on the first page of
694.1536; found 694.1534.
this article): Experimental details for cholesterol photochemical
1
oxidation, H NMR and electronic spectra, RDV and CV experi-
Free Base H2-6: A solution of nickel porphyrin 6 (305 mg,
439 µmol) in a mixture of trifluoroacetic acid and sulfuric acid (25
and 12 mL, respectively) was stirred at room temperature for 2 h.
Then the reaction mixture was poured onto ice and after addition
of dichloromethane (100 mL), the aqueous phase was neutralized
with sodium hydrogen carbonate. The organic phase was dried and
after crystallization (dichloromethane/methanol) the green free-
base H2-6 was obtained in 95% yield (266 mg, 417 µmol); m.p.
Ͼ260 °C.1H NMR (300 MHz, CDCl3, 50 °C): δ = 8.43 and 7.80 (2
d, J ≈ 5 Hz, 2 H, pyrrole), 8.42 and 7.79 (2 d, J ≈ 5 Hz, 2 H,
pyrrole), 7.47 and 7.41 (2 d, J = 4.5 Hz, 2 H, pyrrole), 9.46 (s, 1
H, Hnaphth), 8.82, 8.34, 7.82, and 7.65 (4 m, 4 H, Hnaphth), 8.97,
8.67, 7.86, and 7.86 (4 m, 4 H, Hquin), 7.80–7.88 (m, 4 H, Hortho),
7.59–7.67 (m, 6 H, Hmeta+para) ppm. UV/Vis (CH2Cl2): λmax (ε) =
398 (61000), 443 (52000), 505 (14500), 679 (19500), 751
(17500 –1 cm–1). HRMS: calcd. for C45H27N5 + H+ 638.2339;
found 638.2331.
ments, unit cell view of the crystal structure of H2-6.
Acknowledgments
We thank A. Decian (Service Commun de Rayons X, Université
Louis Pasteur) for solving the structure, J.-M. Strub for recording
the HRMS mass spectra, and H. J. Callot and J. Wytko for helpful
comments. A. J. J. thanks the European Student Exchange Program
(ERASMUS) for a fellowship.
[1] a) R. E. Martin, F. Diederich, Angew. Chem. Int. Ed. 1999, 38,
1351–1377; b) J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007,
107, 718–747; c) K. Müllen, J. P. Rabe, Acc. Chem. Res. 2008,
41, 511–520.
[2] A. Tsuda, A. Osuka, Science 2001, 293, 79–83.
[3] See, for example: R. K. Pandey, G. Zheng, in: The Porphyrin
Handbook (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Ac-
ademic Press, San Diego, 2000, vol. 6, p. 157–230.
The copper and palladium complexes were obtained in almost
quantitative yields by using standard porphyrin metalation pro-
cedures [with Cu(OAc)2 in chloroform/methanol mixtures at reflux
and with Pd(acac)2 in toluene or chlorobenzene at reflux].
[4] a) K. Henrick, P. G. Owston, R. Peters, P. A. Tasker, A. Dell,
Inorg. Chim. Acta 1980, 45, L161–L163; b) H. J. Callot, E.
Schaeffer, R. Cromer, F. Metz, Tetrahedron 1990, 46, 5253–
5262; c) R. W. Doyle, D. Dolphin, J. Chem. Soc., Chem. Com-
mun. 1994, 2463–2464; d) L. Barloy, D. Dolphin, D. Dupre,
T. P. Wijesekera, J. Org. Chem. 1994, 59, 7976–7985; e) M. A.
Faustino, M. G. P. M. S. Neves, M. G. H. Vicente, A. M. S.
Silva, J. A. S. Cavaleiro, Tetrahedron Lett. 1995, 36, 5977–5978;
f) B. Krattinger, D. J. Nurco, K. M. Smith, Chem. Commun.
1998, 757–758; g) Y. V. Ishkov, Russ. J. Org. Chem. 2001, 37,
288–290; h) S. Richeter, C. Jeandon, R. Ruppert, H. J. Callot,
Tetrahedron Lett. 2001, 42, 2103–2106; i) D. Sengupta, B. C.
Robinson, Tetrahedron 2002, 58, 5497–5502; j) H. J. Callot, R.
Ruppert, C. Jeandon, S. Richeter, J. Porphyrins Phthalocyanines
2004, 8, 111–119; k) J. R. McCarthy, M. A. Hyland, C.
Brückner, Org. Biomol. Chem. 2004, 2, 1484–1491; l) S. Jasin-
sky, E. A. Ermilov, N. Jux, B. Röder, Eur. J. Org. Chem. 2007,
1075–1084; m) Y. Cao, A. F. Gill, D. W. Dixon, Tetrahedron
Lett. 2009, 50, 4358–4360; n) P. J. Chmielewski, J. Maciolek, L.
Szterenberg, Eur. J. Org. Chem. 2009, 3930–3939.
[5] a) N. Kobayashi, M. Numao, R. Kondo, S. I. Nakajima, T.
Osa, Inorg. Chem. 1991, 30, 2241–2244; b) H. Aihara, L. Jaqui-
nod, D. J. Nurco, K. M. Smith, Angew. Chem. Int. Ed. 2001, 40,
3439–3441; c) M. Nath, J. C. Huffman, J. M. Zaleski, Chem.
Commun. 2003, 858–859; M. Nath, J. C. Huffman, J. M. Zale-
ski, J. Am. Chem. Soc. 2003, 125, 11484–11485; d) H. S. Gill,
M. Harmjanz, J. Santamaria, I. Finger, M. J. Scott, Angew.
Chem. Int. Ed. 2004, 43, 485–490; e) O. Yamane, K. I. Sugiura,
H. Miyasaka, K. Nakamura, T. Fujimoto, K. Nakamuara, T.
Kaneda, Y. Sakata, M. Yamashita, Chem. Lett. 2004, 33, 40–
41; f) S. Fox, R. W. Boyle, Chem. Commun. 2004, 1322–1323;
g) A. N. Cammidge, P. J. Scaife, G. Berber, D. L. Hughes, Org.
Lett. 2005, 7, 3413–3416; h) D.-M. Shen, C. Liu, Q.-Y. Chen,
Chem. Commun. 2005, 4982–4984; D.-M. Shen, C. Liu, Q.-Y.
Chen, J. Org. Chem. 2006, 71, 6508–6511; i) K. Kurotobi, K. S.
Kim, S. B. Noh, D. Kim, A. Osuka, Angew. Chem. Int. Ed.
2006, 45, 3944–3947; j) E. Hao, F. R. Fronczek, M. G. H.
Vicente, J. Org. Chem. 2006, 71, 1233–1236; k) M. Tanaka, S.
Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Chem.
Commun. 2007, 2069–2071; l) N. K. S. Davis, M. Pawlicki,
H. L. Anderson, Org. Lett. 2008, 10, 3945–3947.
Cu-6: M.p. Ͼ260 °C. UV/Vis (CH2Cl2): λmax (ε) = 401 (62000), 467
(73000), 665 (21000), 699 (27000), 732 (42000 –1 cm–1). HRMS:
calcd. for C45H25N5Cu + H+ 699.1479; found 699.1474.
Pd-6: M.p. Ͼ260 °C. 1H NMR (300 MHz, CDCl3, 45 °C): δ = 8.82
and 8.14 (2 d, J = 4.8 Hz, 2 H, pyrrole), 8.76 and 8.13 (2 d, J =
4.8 Hz, 2 H, pyrrole), 7.96 and 7.92 (2 d, J = 4.8 Hz, 2 H, pyrrole),
9.09 (s, 1 H, Hnaphth), 8.76, 8.23, 7.81, and 7.64 (4 m, 4 H, Hnaphth),
8.89, 8.57, 7.83, and 7.82 (4 m, 4 H, Hquin), 7.88–7.93 (m, 4 H,
Hortho), 7.65–7.75 (m,
6 H, Hmeta and Hpara) ppm. UV/Vis
(CH2Cl2): λmax (ε) = 402 (50000), 467 (72000), 647 (18000), 681
(27000), 710 (43000 –1 cm–1). HRMS: calcd. for C45H25N5Pd +
H+ 742.1218; found 742.1195.
Electrochemical Studies: Dichloromethane was purchased spectro-
scopic grade from Merck, dried with molecular sieves (4 Å), and
stored under argon prior to use. NBu4PF6 was purchased electro-
chemical grade from Fluka and used as received. The electrochemi-
cal experiments were carried out at room temperature in dichloro-
methane containing 0.1 NBu4PF6 in a classical three-electrode
cell by cyclic voltammetry (CV) or rotating disk voltammetry
(RDV). The working electrode was a glassy carbon disk (3 mm in
diameter), the auxiliary electrode a Pt wire, and the pseudo-refer-
ence electrode a Pt wire. All potentials are given vs. Fc/Fc+ used
as an internal standard and are uncorrected from the ohmic drop.
Crystal Data for Compound H2-6: C57H39N5, C45H27N5·2C6H6, M
¯
=
793.98, triclinic, space group P1, a = 10.8368(10), b =
11.6205(10), c = 18.234(2) Å, α = 107.42(2)°, β = 95.33(2)°, γ =
107.32(2)°, V = 2049.3(3) Å3, Z = 2, and D = 1.29 gcm–3. A total of
11945 reflections were collected from a green crystal of dimensions
0.20ϫ0.12ϫ0.08 mm3 using a KappaCCD diffractometer, graph-
ite-monochromated Mo-Kα irradiation, 1.19ϽθϽ30.07°, and a of
temperature 173 K. A total of 6427 unique reflections having
IϾ2σ(I) were used to determine and refine the structure. Final re-
sults: R = 0.0694, wR2 = 0.1907, GOF = 0.984, and final largest
difference peak: 0.274 eÅ–3.
[6] a) C. M. A. Alonso, M. G. P. M. S. Neves, A. M. S. Silva,
J. A. S. Cavaleiro, H. K. Hombrecher, Tetrahedron Lett. 1997,
Eur. J. Org. Chem. 2009, 5725–5730
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5729