Inorganic Chemistry
COMMUNICATION
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: bendix@kiku.dk (J.B.), jbc@kiku.dk (J.B.C.).
’ REFERENCES
(1) Tomalia, D. A.; Naylor, A. M.; Goddard, W. A., III Angew. Chem.,
Int. Ed. 1990, 29, 138–175.
(2) Mak, C. C.; Bampos, N.; Sanders, J. K. M. Angew. Chem., Int. Ed.
1998, 37, 3020–3023.
(3) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999,
99, 1665–1688.
(4) Ballauff, M.;Likos, C. N.Angew. Chem., Int. Ed. 2004, 43, 2998–3020.
(5) (a) R€oglin, L.; Lempens, E. H. M.; Meijer, E. W. Angew. Chem.,
Int. Ed. 2011, 50, 102–110. (b) Crooks, R. M.; Zhao, M.; Sun, L.;
Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181–190.
(6) Floyd, W. C.; Klemm, P. J.; Smiles, D. E.; Kohlgruber, A. C.;
Pierre, V. C.; Mynar, J. L.; Frꢀechet, J. M. J.; Raymond, K. N. J. Am. Chem.
Soc. 2011in press.
(7) Li, G.; Knowles, P. F.; Murphy, D. J.; Marsh, D. J. Biol. Chem.
1990, 16867–16872.
(8) (a) Ottaviana, F.; Turro, N. J. Advances in ESR methods in polymer
research, Wiley: New York, 2006; Vol. 11. (b) Han, H. J.; Sebby, K. B.;
Singel, D. J.; Cloninger, M. J. Macromolecules 2007, 40, 3030–3033.
(9) Bendix, J.; Anthon, C.; Schau-Magnussen, M.; Brock-Nannestad,
T.; Vibenholt, J.; Rehman, M.; Sauer, S. P. A. Angew. Chem., Int. Ed. 2011,
50, 4480–4483.
(10) (a) Aviv-Harel, I.; Gross, Z. Chem.—Eur. J. 2009, 15, 8382
–8394. (b) Paolesse, R. Synlett 2008, 15, 2215–2230. (c) Erben, C.; Will,
S.; Kadish, K. M. Porphyrin Handbook; Academic Press: San Diego,
2000; Vol. 2, pp 233ꢀ300. (d) Bendix, J.; Gray, H. B.; Golubkov, G.;
Gross, Z. Chem. Commun. 2000, 1957–1958.
Figure 3. (aꢀc) EPR spectra in CH3NO2 of the three generations of
chromium(V)ꢀnitrido-functionalized corrole dendrimers. (dꢀf) Spec-
tra of the same systems reacted with excess tritylhexafluorophosphate.
(gꢀi) Spectra of the corrole dendrimer (9) complexed with chromium-
(V) nitride in neat CH2Cl2 and with added DMF.
(11) Golubkov, G.; Bendix, J.; Gray, H. B.; Mahammed, A.; Goldberg,
I.; DiBilio, A. J.; Gross, Z. Angew. Chem., Int. Ed. 2001, 40, 2132–2134.
(12) Sch€ofberger, W.; Lengwin, F.; Reith, L. M.; List, M.; Kn€or, G.
Inorg. Chem. Commun. 2010, 13, 1187–1190.
(13) Gao, Y.; Liu, J.; Wang, M.; Na, Y.; Åkermark, B.; Sun, L.
Tetrahedron 2007, 63, 1987–1994.
was observed when DMF was added, indicating a change of the
dendrimer structure in solution. Interpretation of the extra signal
at high fieldasonecomponent(theperpendicular) of an anisotropic
spectrum overlaid with the isotropic spectrum requires that g >
g^, an assumption which is corroborated by the frozen-solution
spectrum of the chromium(V)ꢀnitrido corrole ester complex
(Supporting Information). This effect can be ascribed to the
breaking of intramolecular hydrogen bonding in the dendrimer
structure. The increase in the size accompanying this swelling
reducesthe tumbling rate andcauses a freezingof the signal on the
EPR time scale. The effect is observed for all generations but
becomes much less pronounced with increasing size.
In conclusion, we have presented the synthesis of the first corrole-
centered dendrimers via a convergent route. Access to the dendri-
mer cores has been demonstrated by the metal complex formation
of the assembled dendrimers and subsequent atom-transfer chem-
istry to yield chromium(V)ꢀnitrido-derivatized systems. The oc-
currence of this atom-transfer reaction at the inner sphere of the
chromium(III)ꢀcorrole shows that the dendrimer core is accessible
to a bulky, uncharged MnV(N)salen complex. Further, the bridge
formation at the centrally coordinated chromium(V) center was
achieved by reaction with the trityl cation, as is unambiguously
shown by EPR spectroscopy. The sensitivity of the hyperfine
coupling in CrV(N) toward functionalization in combination with
its diverse reactivity renders it a possibly very versatile spin probe
also for related porphyrin- or corrin-centered systems.
(14) Zdilla, M. J.; Abu-Omar, M. M. J. Am. Chem. Soc. 2006,
128, 16971–16979.
(15) (a) Pittelkow, M.; Christensen, J. B. Org. Lett. 2005,
7, 1295–1298. (b) Pittelkow, M.; Brock-Nannestad, T.; Moth-Poulsen,
K.; Christensen, J. B. Chem. Commun. 2008, 2358–2360.
(16) Paolesse, R.; Nardis, S.; Sagone, F.; Khoury, R. G. J. Org. Chem.
2001, 66, 550–556 and Supporting Information.
(17) (a) Gross, Z.; Gray, H. B. Adv. Synth. Catal. 2004, 346, 165–170.
(b) Meier-Callahan, A. E.; DiBilio, A. J.; Simkhovich, L.; Mahammed, A.;
Goldberg, I.; Gray, H. B.; Gross, Z. Inorg. Chem. 2001, 40, 6788–6793.
(18) (a) Birk, T.; Bendix, J. Inorg. Chem. 2003, 42, 7608–7615. (b)
Bendix, J. J. Am. Chem. Soc. 2003, 125, 13348–13349.
(19) (a) Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983,
105, 2073–2074. (b) Bottomley, L. A.; Neely, F. L. J. Am. Chem. Soc.
1989, 111, 5955–5957. (c) Woo, L. K.; Goll, J. G. J. Am. Chem. Soc. 1989,
111, 3755–3757. (d) Chang, C. J.; Low, D. W.; Gray, H. B. Inorg. Chem.
1997, 36, 270–271.
(20) Ventura, B.; Esposti, A. D.; Koszarna, B.; Gryko, D. T.;
Flamigni, L. New J. Chem. 2005, 29, 1559–1566.
(21) (a) Bramley, R.; Ji, J. Y.; Judd, R. J.; Lay, P. A. Inorg. Chem. 1990,
29, 3089–3094. (b) Bendix, J.; Meyer, K.; Weyherm€uller, T.; Bill, E.;
Metzler-Nolte, N.; Wieghardt, K. Inorg. Chem. 1998, 37, 1767–1775.
(22) (a) Arshankow, S. I.; Poznjak, A. L. Z. Anorg. Allg. Chem. 1981,
481, 201–206. (b) Meyer, K.; Bendix, J.; Bill, E.; Weyherm€uller, T.;
Wieghardt, K. Inorg. Chem. 1998, 37, 5180–5188.
(23) (a) Bendix, J.; Birk, T.; Weyherm€uller, T. Dalton Trans.
2005, 2737–2741. (b) Bendix, J.; Deeth, R. J.; Weyherm€uller, T.; Bill,
E.; Wieghardt, K. Inorg. Chem. 2000, 39, 930–938.
’ ASSOCIATED CONTENT
S
Supporting Information. General experimental proce-
b
dures, UV/vis spectra, and EPR spectra. This material is available
5869
dx.doi.org/10.1021/ic200739y |Inorg. Chem. 2011, 50, 5867–5869