and K. S. Kim, Chem. Soc. Rev., 2006, 35, 355; (g) P. A. Gale, Acc.
Chem. Res., 2006, 39, 465.
2 (a) Z. C. Wen and Y. B. Jiang, Tetrahedron, 2004, 60, 11109;
(b) F. Y. Wu, Z. Li, L. Guo, X. Wang, M. H. Lin, Y. F. Zhao and
Y. B. Jiang, Org. Biomol. Chem., 2006, 4, 624; (c) X. Qian, Y. Xiao,
Y. Xu, X. Guo, J. Qian and W. Zhu, Chem. Commun., 2010,
46, 6418; (d) R. M. Duke and T. Gunnlaugsson, Tetrahedron Lett.,
2010, 51, 5402; (e) C. Hertzog-Ronen, E. Borzin, Y. Gerchikov,
N. Tessler and Y. Eichen, Chem.–Eur. J., 2009, 15, 10380–10386;
(f) E. Borzin, A. Shemesh, C. Hertzog-Ronen, Y. Gerchikov,
N. Tessler and Y. Eichen, J. Phys. Org. Chem., 2010, 23,
1108–1113.
Fig. 4 Minimum energy optimized structures of free 1 and [1 ꢀ Fꢀ]
complex (B3LYP/6-31+G*).
3 (a) V. Thiagarajan, P. Ramamurthy, D. Thirumalai and
V.
T.
Ramakrishnan,
Org.
Lett.,
2005,
7,
657;
(b) T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and
F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094; (c) Z. Xu,
S. Kim, K.-H. Lee and J. Yoon, Tetrahedron Lett., 2007, 48, 3797;
(d) Luminescence Applied in Sensor Science, Top. Curr. Chem.,
300, 2011, P. Luca, M. Marco, Z. Nelsi (Eds.); (e) J. Geng, P. Liu,
B. Liu, G. Guan, Z. Zhang and M.-Y. Han, Chem.–Eur. J., 2010,
16, 3720; (f) H. Salman, Y. Abraham, S. Tal, S. Meltzman,
M. Kapon, N. Tessler, S. Speiser and Y. Eichen, Eur. J. Org.
Chem., 2005, 2207–2212.
4 (a) R. B. P. Elmes and T. Gunnlaugsson, Tetrahedron Lett., 2010,
51, 4082; (b) K. K.-W. Lo, M.-W. Louie and K. Y. Zhang, Coord.
Chem. Rev., 2010, 254, 2603; (c) J.-C. G. Bunzli, Chem. Rev., 2010,
110, 2729.
¨
5 (a) S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee and J. S. Kim,
Org. Lett., 2005, 7, 4839; (b) J. S. Wu, J. H. Zhou, P. F. Wang,
X. H. Zhang and S. K. Wu, Org. Lett., 2005, 7, 2133.
Fig. 5 Possible forms of free and bound 1 at the ground state and the
excited state.
6 (a) J. Bourson, J. Pouget and B. Valeur, J. Phys. Chem., 1993,
97, 4552; (b) S. Watanabe, O. Onogawa, Y. Komatsu and
K. Yoshida, J. Am. Chem. Soc., 1998, 120, 229; (c) Z. H. Lin,
Y. G. Zhao, C. Y. Duan, B. G. Zhang and Z. P. Bai, Dalton Trans.,
2006, 3678.
7 L. G. Arnaut and S. J. Formosinho, J. Photochem. Photobiol., A,
1993, 75, 1.
8 S. G. Schulman, in Acid–Base Chemistry of Excited Singlet States.
In Modern Fluorescence Spectroscopy, ed. E. L. Wehry, Plenum
Press, New York, 1976, p. 239.
9 Starting materials were made according to: (a) A. W. White,
R. Almassy, A. H. Calvert, N. J. Curtin, R. J. Griffin,
Z. Hostomsky, K. Maegley, D. R. Newell, S. Srinivasan and
B. T. Golding, J. Med. Chem., 2000, 43, 4084; (b) U. Tawar,
A. K. Jain, B. S. Dwarakanath, R. Chandra, Y. Singh,
N. K. Chaudhury, D. Khaitan and V. Tandon, J. Med. Chem.,
2003, 46, 3785; (c) T. Fekner, J. Gallucci and M. K. Chan, J. Am.
Chem. Soc., 2004, 126, 223.
between fluoride and cyclo[2]benzimidazole, 1 (B3LYP/6-31+G*).
The 1-4Hin structure has no intramolecular hydrogen
bonds, rendering the ESIPT process impossible. As the excited
molecule cannot undergo the enol - keto tautomerization
relaxation through intramolecular proton transfer, radiative
relaxation from the 1-4Hin excited-state is regained and a
strong emission band at 412 nm is observed. Fig. 5 presents
the proposed mechanism of fluorescence regain upon binding
an anion by cyclo[2]benzimidazole, 1.
In conclusion, a new host for anions, cyclo[2]benzimidazole,
1, was prepared and characterized. Compound 1 was shown to
be capable of reporting the presence of anions through
fluorescence increase. The molecule was found to undergo
an excited-state intramolecular proton transfer (ESIPT)
process. This process provides the molecule with a non-
radiative relaxation pathway which explains its low quantum
yield. Upon binding an anion, the 1-4Hin tautomer can no
longer form intramolecular hydrogen bonds and thus the
ESIPT pathway is blocked, allowing for the molecule to relax
through emissive pathways.
10 Gaussian, DFT B3LYP, 6-311G*, M. J. Frisch, et al., Gaussian 03,
Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
11 (a) K. Das, N. Sarkar, A. K. Ghosh, D. Majumdar, D. N. Nath
and K. Bhattacharyya, J. Phys. Chem., 1994, 98, 9126;
(b) S. Santra and S. K. Dogra, Chem. Phys., 1998, 226, 285;
(c) D. LeGourrierec, V. A. Kharlanov, R. G. Brown and
W. Rettig, J. Photochem. Photobiol., A, 2000, 130, 101;
(d) S. Santra and S. K. Dogra, J. Mol. Struct., 1999, 476, 223;
(e) F. S. Rodembusch, F. P. Leusin, L. F. C. Medina, A. Brandelli
and V. Stefani, Photochem. Photobiol. Sci., 2005, 4, 254;
(f) T. Iijima, A. Momotake, Y. Shinohara, T. Sato,
Y. Nishimura and T. Arai, J. Phys. Chem. A, 2010, 114, 1603.
12 (a) J. S. Stephan and K. H. Grellmann, J. Phys. Chem., 1995,
99, 10066; (b) S. Tobita, M. Yamamoto, N. Kurahayashi,
R. Tsukagoshi, Y. Nakamura and H. Shizuka, J. Phys. Chem. A,
1998, 102, 5206; (c) F. Liang, L. Wang, D. Ma, X. Jing and
F. Wang, Appl. Phys. Lett., 2002, 81, 4; (d) S. Oncul and
A. P. Demchenko, Spectrochim. Acta, Part A, 2006, 65, 179.
13 R. K. Sharma and J. L. Fry, J. Org. Chem., 1983, 48, 2112.
Notes and references
1 (a) Fluorescent Chemosensors for Ion and Molecular Recognition,
ed. A. W. Czarnik, American Chemical Society, Washington, DC,
1993; (b) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson,
A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice,
Chem. Rev., 1997, 97, 1515; (c) M. H. Keefe, K. D. Benkstein and
J. T. Hupp, Coord. Chem. Rev., 2000, 205, 201;
(d) F. P. Schmidtchen and M. Berger, Chem. Rev., 1997,
97, 1609; (e) J. F. Callan, A. P. de Silva and D. C. Magri,
Tetrahedron, 2005, 61, 8551; (f) J. Yoon, S. K. Kim, N. J. Singh
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6087–6089 6089