Organic Letters
Letter
Cooperative Catalysis in C−H and C−C Bond Activation. Chem. Rev.
2017, 117, 8977−9015. (c) Ghosh, A.; Johnson, K. F.; Vickerman, K.
L.; Walker, J. A.; Stanley, L. M. Recent Advances in Transition Metal-
Catalysed Hydroacylation of Alkenes and Alkynes. Org. Chem. Front.
2016, 3, 639−644. (d) Oonishi, Y. Development of Novel
Cyclizations via Rhodacycle Intermediate and its Application to
Synthetic Organic Chemistry. Chem. Pharm. Bull. 2015, 63, 397−407.
(e) Willis, M. C. Hydroacylation of Alkenes, Alkynes, and Allenes.
Comprehensive Organic Synthesis II. 2014, 4, 961−983. (f) Leung, J.
C.; Krische, M. J. Catalytic Intermolecular Hydroacylation of C−C π-
Bonds in the Absence of Chelation Assistance. Chem. Sci. 2012, 3,
2202−2209. (g) Tanaka, K. Rhodium- Catalyzed Annulation
Reactions of 2-Alkynylbenzaldehydes and 2-Vinylbenzaldehyde with
Unsaturated Compounds. Yuki Gosei Kagaku Kyokaishi 2012, 70,
1134−1144. (h) Willis, M. C. Transition Metal Catalyzed Alkene and
Alkyne Hydroacylation. Chem. Rev. 2010, 110, 725−748. (i) Jun, C.-
H.; Jo, E.-A.; Park, J.-W. Intermolecular Hydroacylation by
Transition-Metal Complexes. Eur. J. Org. Chem. 2007, 2007, 1869−
1881.
2015, 48, 921−934. (g) Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-
Catalyzed Cross-Couplings through Carbene Migratory Insertion.
Chem. Rev. 2017, 117, 13810−13889.
(8) (a) Sun, P.; Gao, S.; Yang, C.; Guo, S.; Lin, A.; Yao, H.
Controllable Rh(III)-Catalyzed Annulation between Salicylaldehydes
and Diazo Compounds: Divergent Synthesis of Chromones and
Benzofurans. Org. Lett. 2016, 18, 6464−6467. For a 1,1-hydro-
acylation of carbenes via palladium-catalyzed carbonylation followed
by acyl migratory insertion in the presence of aryl iodides, CO, and
triethylsilane, see: (b) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang,
Y.; Wang, J. Palladium-Catalyzed Carbonylation/Acyl Migratory
Insertion Sequence. Angew. Chem., Int. Ed. 2010, 49, 1139−1142.
(9) For a review, see: (a) Liu, X.; Lin, L.; Feng, X. Chiral N,N’-
Dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric
Reactions. Acc. Chem. Res. 2011, 44, 574−587. (b) Zhang, Y.; Wang,
J. Recent Development of Reactions with α-Diazocarbonyl Com-
pounds as Nucleophiles. Chem. Commun. 2009, 5350−5361.
(10) (a) Allen, C. L.; Williams, J. M. J. Ruthenium-Catalyzed Alkene
Synthesis by the Decarbonylative Coupling of Aldehydes with
Alkynes. Angew. Chem., Int. Ed. 2010, 49, 1724−1725. (b) Dermenci,
A.; Dong, G. B. Decarbonylative C−C Bond Forming Reactions
Mediated by Transition Metals. Sci. China: Chem. 2013, 56, 685−701.
(11) (a) Kurandina, D.; Gevorgyan, V. Rhodium Thiavinyl Carbenes
from 1,2,3-Thiadiazoles Enable Modular Synthesis of Multisubstituted
Thiophenes. Org. Lett. 2016, 18, 1804−1807. (b) Seo, B.; Kim, Y. G.;
Lee, P. H. Synthesis of Isothiazole via the Rhodium-Catalyzed
Transannulation of 1,2,3-Thiadiazoles with Nitriles. Org. Lett. 2016,
18, 5050−5053. (c) Son, J.-Y.; Kim, J.; Han, S. H.; Kim, S. H.; Lee, P.
H. Regioselective Synthesis of Dihydrothiophenes and Thiophenes via
the Rhodium-Catalyzed Transannulation of 1,2,3-Thiadiazoles with
Alkenes. Org. Lett. 2016, 18, 5408−5411. (d) Kim, J. F.; Lee, J.; Yun,
H.; Baek, Y.; Lee, P. H. Rhodium-Catalyzed Intramolecular
Transannulation Reaction of Alkynyl Thiadiazole Enabled 5,n-Fused
Thiophenes. J. Org. Chem. 2017, 82, 1437−1447. (e) Seo, B.; Kim,
H.; Kim, Y. G.; Baek, Y.; Um, K.; Lee, P. H. Synthesis of Bicyclic
Isothiazoles through an Intramolecular Rhodium-Catalyzed Trans-
annulation of Cyanothiadiazoles. J. Org. Chem. 2017, 82, 10574−
10582.
(4) For selected reviews see: (a) Xua, Q.; You, S. Asymmetric
Hydroacylation Reactions in Asymmetric Functionalization of C−H
Bonds, RSC Catalysis Series No. 25.; You, S., Ed.; RSC: Cambridge,
UK, 2015; Vol. 8, pp358−383. (b) Murphy, S. K.; Dong, V. M.
Enantioselective Hydroacylation of Olefins with Rhodium Catalysts.
́
Chem. Commun. 2014, 50, 13645−13649. (c) Gonzalez-Rodríguez,
C.; Willis, M. C. Rhodium-Catalyzed Enantioselective Intermolecular
Hydroacylation Reactions. Pure Appl. Chem. 2011, 83, 577−585.
(d) Fu, G. C. Recent Advances in Rhodium(I)-Catalyzed Asymmetric
Olefin Isomerization and Hydroacylation Reactions. Modern Rho-
dium-Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH
Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 79−91. (e) Tanaka,
M.; Sakai, K.; Suemune, H. Asymmetric Rhodium-Catalyzed Intra-
molecular Hydroacylation for Five-Membered Ring Ketone For-
mation. Curr. Org. Chem. 2003, 7, 353−367.
(5) (a) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. Catalytic Trans-
formation of Aldehydes with Nickel Complexes through η2
Coordination and Oxidative Cyclization. Acc. Chem. Res. 2015, 48,
1746−1755. (b) Coulter, M. M.; Dong, V. M. Enantioselective
Synthesis of Lactones via Rh-Catalyzed Ketone Hydroacylation. In
Asymmetric Synthesis: More Methods and Applications, 1st ed.;
(12) For our work on 1,2,3-thiodiazoles, see: (a) He, W.; Zhuang, J.;
Yang, Z.; Xu, J. Sterically Controlled Diastereoselectivity in Thio-
Staudinger Cycloadditions of Alkyl/Alkenyl/Aryl-Substituted Thio-
ketenes. Org. Biomol. Chem. 2017, 15, 5541−5548. (b) He, W.;
Zhuang, J.; Du, H.; Yang, Z.; Xu, J. Stereochemistry and Mechanistic
Insights in the [2t + 2i + 2i] Annulations of Thioketenes and Imines.
Org. Biomol. Chem. 2017, 15, 9424−9432.
̈
Christmann, M., Brase, St., Eds.; Wiley-VCH: Weinheim, Germany,
2012; pp 279−284. (c) Willis, M. C. Catalytic Intramolecular Ketone
Hydroacylation: Enantioselective Synthesis of Phthalides. Angew.
Chem., Int. Ed. 2010, 49, 6026−6027.
(6) (a) Yang, Z.; Xu, J. Synthesis of Benzo-γ-Sultams via the Rh-
Catalyzed Aromatic C−H Functionalization of Diazosulfonamides.
Chem. Commun. 2014, 50, 3616−3618. (b) Huang, P.; Yang, Z.; Xu, J.
Specific Intramolecular Aromatic C-H Insertion of Diazosulfona-
mides. Tetrahedron 2017, 73, 3255−3265. (c) Liu, J.; Tu, J.; Yang, Z.;
Pak, C.; Xu, J. Improved Buchner Reaction Selectivity in the Copper-
Catalyzed Reactions of Ethyl 3-Arylmethylamino-2-Diazo-3-Oxopro-
panoates. Tetrahedron 2017, 73, 4616−4626.
(13) For some examples, see: (a) Chen, C. H.; Reynolds, G. A.; Van
Allan, J. A. Synthesis of 4H-Thiopyran-4-Ones. J. Org. Chem. 1977,
42, 2777−2778. (b) Chen, C. H.; Reynolds, G. A. Synthesis of
Unsymmetrical DELTA 4,4’-2,6-Diphenyl-4-(Thiopyranyl)-4H-Pyr-
ans. J. Org. Chem. 1980, 45, 2449−2453. (c) Belfield, K. D.; Bondar,
M. V.; Morales, A. R.; Frazer, A.; Mikhailov, I. A.; Przhonska, O. V.
Photophysical Properties and Ultrafast Excited-State Dynamics of a
New Two-Photon Absorbing Thiopyranyl Probe. J. Phys. Chem. C
2013, 117, 11941−11952.
(7) For selected recent reviews carbene transannulations, see:
(a) Chattopadhyay, B.; Gevorgyan, V. Transition Metal Catalyzed
Denitrogenative Transannulation: Converting Triazoles into Other
Heterocyclic Systems. Angew. Chem., Int. Ed. 2012, 51, 862−872.
(b) Shu, X.-Z.; Shu, D.; Schienebeck, C. M.; Tang, W. Rhodium-
Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions,
Inspiration from the Recent “Gold Rush. Chem. Soc. Rev. 2012, 41,
7698−7711. (c) Gulevich, A. V.; Gevorgyan, V. Versatile Reactivity of
Rhodium-Iminocarbenes Derived from N-Sulfonyl Triazoles. Angew.
Chem., Int. Ed. 2013, 52, 1371−1373. (d) Xu, X.; Doyle, M. P. The [3
+ 3]-Cycloaddition Alternative for Heterocycle Syntheses: Catalyti-
cally Generated Metalloenolcarbenes as Dipolar Adducts. Acc. Chem.
Res. 2014, 47, 1396−1405. (e) Davies, H. M. L.; Alford, J. S.
Reactions of Metallocarbenes Derived from N-sulfonyl-1,2,3-Tria-
zoles. Chem. Soc. Rev. 2014, 43, 5151−5162. (f) Burtoloso, A. C. B.;
Dias, R. M. P.; Bernardim, B. α,β-Unsaturated Diazoketones as Useful
Platforms in the Synthesis of Nitrogen Heterocycles. Acc. Chem. Res.
(14) For some examples, see: (a) Rosiak, A.; Muller, R. M.;
̈
Christoffers, J. Synthesis of 2,3-Dihydrothiopyran-4-ones from 3-Oxo-
1-pentene-4-ynes. Monatsh. Chem. 2007, 138, 13−26. (b) Pieroni, M.;
Dimovska, M.; Brincat, J. P.; Sabatini, S.; Carosati, E.; Massari, S.;
Kaatz, G. W.; Fravolini, A. From 6-Aminoquinolone Antibacterials to
6-Amino-7-thiopyranopyridinylquinolone Ethyl Esters as Inhibitors of
Staphylococcus Aureus Multidrug Efflux Pumps. J. Med. Chem. 2010,
53, 4466−4480.
(15) For a mechanism for Rh-catalyzed decarbonylation, see:
Fristrup, P.; Kreis, M.; Palmelund, A.; Norrby, P.-O.; Madsen, R. The
Mechanism for the Rhodium-Catalyzed Decarbonylation of Alde-
hydes: A Combined Experimental and Theoretical Study. J. Am.
Chem. Soc. 2008, 130, 5206−5215.
(16) (a) Kou, K. G. M.; Le, D. N.; Dong, V. M. Rh(I)-Catalyzed
Intermolecular Hydroacylation: Enantioselective Cross-Coupling of
E
Org. Lett. XXXX, XXX, XXX−XXX