1H NMR (CD3COCD3, 400 MHz, 298 K): d 9.10 (s, 1H), 8.63
(d, J = 8.4 Hz, 1H), 8.56 (d, J = 7.2 Hz, 1H), 8.51 (d, J = 8.0
Hz, 1H), 8.27 (s, 1H), 7.99 (s, 1H), 7.90 (s, 2H), 7.83 (t, J = 7.8
Hz, 1H), 7.41 (dd, J = 8.4 Hz, 4.0 Hz, 3H), 7.34 (d, J = 8.0 Hz,
2H), 7.26 (d, J = 8.0 Hz, 2H), 7.05 (s, 2H), 6.95–6.70 (m, 9H),
5.81 (s, 2H), 5.20 (m, 2H), 5.04 (s, 2H), 4.84 (t, J = 7.2 Hz, 2H),
4.72 (br, 4H), 4.60 (s, 3H), 4.41 (t, J = 7.2 Hz, 2H), 4.26 (m, 2H),
4.19–4.10 (m, 6H), 3.97 (t, J = 4.4 Hz, 4H), 3.94 (s, 6H), 3.90 (m,
2H), 3.88–3.80 (m, 6H), 3.70–3.57 (m, 8H), 3.30 (t, J = 4.4 Hz,
4H), 2.11 (m, 2H), 1.99 (s, 3H), 1.91 (s, 3H), 1.89 (m, 2H), 1.30 (m,
12H). 13C NMR (CD3COCD3, 100 MHz, 298 K): d 166.1, 164.8,
164.3, 160.1, 158.7, 157.1, 148.9, 148.6, 148.6, 148.1, 144.0, 140.8,
140.5, 140.0, 137.4, 136.7, 136.7, 134.7, 134.4, 134.3, 133.4, 131.9,
131.9, 131.8, 130.9, 130.8, 130.4, 129.3, 128.8, 128.3, 127.1, 127.0,
125.5, 125.2, 124.7, 124.6, 124.6, 124.2, 122.2, 122.1, 120.8, 119.0,
117.6, 116.1, 115.7, 113.8, 113.5, 110.6, 71.7, 71.7, 71.3, 71.2, 69.2,
68.9, 67.5, 62.5, 59.9, 55.1, 54.4, 53.1, 53.0, 50.7, 43.6, 39.4, 39.0,
38.8, 31.2, 27.2, 26.7, 23.7, 14.5, 14.4. HRMS (ESI) (m/z): [M -
2PF6]2+ calcd for C97H112ClN9O17S2, 887.3670; found, 887.3704.
(20090074120017), Shanghai Chenguang project (09CG26), the
Fundamental Research Funds for the Central Universities
(WJ1014001) and the Scientific Committee of Shanghai for
funds. We thank Mr. L.-L. Zhu and Mr. J.-Y. Jin for helpful
discussions.
Notes and references
1 V. Balzani, A. Credi, M. Venturi, Molecular Devices and Machines -
Concepts and Perspectives for the Nanoworld, Wiley-VCH, Weinheim,
2008.
2 V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew. Chem.
Int. Ed., 2000, 39, 3348; H. Tian and Q.-C. Wang, Chem. Soc. Rev.,
2006, 35, 361; W. R. Browne and B. L. Feringa, Nat. Nanotechnol.,
2006, 1, 25; V. Balzani, A. Credi, S. Silvi and M. Venturi, Chem. Soc.
Rev., 2006, 35, 1135; S. Saha and J. F. Stoddart, Chem. Soc. Rev.,
2007, 36, 77; B. Champin, P. Mobian and J.-P. Sauvage, Chem. Soc.
Rev., 2007, 36, 358; E. R. Kay, D. A. Leigh and F. Zerbetto, Angew.
Chem., Int. Ed., 2007, 46, 72; D.-H. Qu and H. Tian, Chem. Sci., 2011,
DOI: 10.1039/c0sc00653j.
3 E. M. Pe´rez, D. T. F. Dryden, D. A. Leigh, G. Teobaldi and F. Zerbetto,
J. Am. Chem. Soc., 2004, 126, 12210; B. Ferrer, G. Rogez, A. Credi, R.
Ballardini, M. T. Gandolfi, V. Balzani, Y. Liu, H.-R. Tseng and J. F.
Stoddart, Proc. Natl. Acad. Sci. U. S. A., 2006, 106, 18411; W. Zhou, J.
Li, X. He, C. Li, J. Lv, Y. Li, S. Wang, H. Liu and D. Zhu, Chem.–Eur.
J., 2008, 14, 754; W. Zhou, S. Zhang, G. Li, Y. Zhao, Z. Shi, H. Liu and
Y. L i , ChemPhysChem, 2009, 10, 2066.
Conclusions
Combining the switching processes performed by rotaxane 1-H-
o in response to different combinations of chemical and photo-
chemical stimuli, it can be summarized that the photochromic
DTE unit played a very important role as a controlling unit in this
multi-level molecular machine, in which multi-mode alteration
of intercomponent interactions can be realized. When the DTE
unit is in its open form, the PElT process between the open-
form DTE unit and the naphthalimide fluorescent unit can be
tuned by a chemically driven large-amplitude positional change
of the subunit. On the other hand, when the DTE unit is in
its closed-form, the PEnT process and charge transfer interac-
tion between the closed-form DTE unit and the naphthalimide
fluorescent unit can be chemically regulated. In conclusion, we
have demonstrated reversible multi-mode alteration of intercom-
ponent interactions such as energy transfer, electron transfer,
charge transfer etc. in a multi-state rotaxane system by taking
advantage of UV/Vis absorption spectroscopy and time-resolved
fluorescence spectroscopy. Most importantly, we have proved that,
by introducing photochromic units to the unique structure of a
rotaxane, combination of different tasks (e.g. memory with stable
photochromic unit) can be realized in a multi-state molecular
shuttle, which holds an important potential to construct multi-
functional molecular machines.1,14,15
4 H. Onagi and J. Rebek, Chem. Commun., 2005, 4604; Y. Li, H. Li, Y.
Li, H. Liu, S. Wang, X. He, N. Wang and D. Zhu, Org. Lett., 2005, 7,
4835.
5 Q. Jiang, H.-Y. Zhang, M. Han, Z.-J. Ding and Y. Liu, Org. Lett., 2010,
12, 1728.
6 H. Tian, Angew. Chem. Int. Ed., 2010, 49, 4710; U. Pischel, Angew.
Chem., Int. Ed., 2007, 46, 4026.
7 M. Irie, Chem. Rev., 2000, 100, 1685; H. Tian and S. J. Yang, Chem.
Soc. Rev., 2004, 33, 85; B. L. Feringa, J. Org. Chem., 2007, 72, 6635; H.
Tian and S. Wang, Chem. Commun., 2007, 781.
8 D.-H. Qu, Q.-C. Wang and H. Tian, Angew. Chem., Int. Ed., 2005, 44,
5296; D.-H. Qu, F.-Y. Ji, Q.-C. Wang and H. Tian, Adv. Mater., 2006,
18, 2035; A. Credi, Angew. Chem., Int. Ed., 2007, 46, 5472.
9 P. R. Ashton, I. W. Baxter, F. M. Raymo, J. F. Stoddart, A. J. P. White,
D. J. Williams and R. Wolf, Angew. Chem., Int. Ed., 1998, 37, 1913;
N. Yamaguchi, D. S. Nagvekar and H. W. Gibson, Angew. Chem., Int.
Ed., 1998, 37, 2361; S. J. Cantrill, G. J. Youn, J. F. Stoddart and D.
J. Williams, J. Org. Chem., 2001, 66, 6857; F. Wang, C. Han, C. He,
Q. Zhou, J. Zhang, C. Wang, N. Li and F. Huang, J. Am. Chem. Soc.,
2008, 130, 11254; D.-H. Qu and B. L. Feringa, Angew. Chem., Int. Ed.,
2010, 49, 1107.
10 F. Coutrot, C. Romuald and E. Busseron, Org. Lett., 2008, 10,
3741.
11 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515.
12 G. Jiang, S. Wang, W. Yuan, L. Jiang, Y. Song, H. Tian and D. B. Zhu,
Chem. Mater., 2006, 18, 235; J. Zhang, W. Tan, X. Meng and He Tian,
J. Mater. Chem., 2009, 19, 5726.
13 The ratio of open/close form at the PSS state was determined as 1 : 1
using HPLC, as shown in Figure S14 (supporting information†).
14 (a) V. Serreli, C.-F. Lee, E. R. Kay and D. A. Leigh, Nature, 2007, 445,
523; (b) A. Trabolsi, N. Khashab, A. C. Fahrenbach, D. C. Friedman,
M. T. Colvin, K. K. Cot´ı, D. Benitez, E. Tkatchouk, J.-C. Olsen, M.
E. Belowich, R. Carmielli, H. A. Khatib, W. A. Goddard III, M. R.
Wasielewski and J. F. Stoddart, Nat. Chem., 2010, 2, 42.
15 S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo, F. M. Raymo,
M. Baroncini and A. Credi, J. Am. Chem. Soc., 2007, 129, 13378.
Acknowledgements
We thank the NSFC/China (20902024 and 20972053), National
Basic Research 973 Program (2011CB808400), the Foundation for
the Author of National Excellent Doctoral Dissertation of China
(200957), Shanghai Pujiang Talent Program (10PJ1402700),
Fok Ying Tong Education Foundation (121069), SRFDP
4056 | Org. Biomol. Chem., 2011, 9, 4051–4056
This journal is
The Royal Society of Chemistry 2011
©