82.39; H 6.44; N, 4.85%. MS (MALDI-TOF) m/z ¼ 1100.29
(exact mass ¼ 1100).
Triphenylamino substituted perylene bisimides exhibit excellent
n-type characteristics with good air stability whereas bay car-
bazolyl substituted perylene bisimide derivatives can transport
both electrons and holes in ambient conditions. Changing the
linking topology of carbazolyl moieties to the core of perylene
bisimides has furnished materials with complementary semi-
conducting properties. These new electro-active multi-
chromophoric organic semiconductors with wide absorption
window, excellent photo-induced intramolecular charge transfer
and efficient charge carrier mobilities may find application in
various organic electronic and optoelectronic devices.
1,7-bis(9-ethyl-2-carbazolyl) N,N0-2-ethylhexyl perylene bisi-
mide (2). Yield ¼ 41%; black solid. 1H NMR (300 MHz, CDCl3,
d ppm): 8.64–8.51 (m, 2H), 8.23–7.96 (m, 7H), 7.74–7.46 (m, 7H),
7.34–7.02 (m, 4H), 4.83–4.25 (m, 8H, NCH2), 1.98–1.94 (m, 2H,
CH), 1.39 (b, 16H, CH2), 1.28 (b, 6H, CH3), 1.01–0.89 (m,
12H, CH3). 13C NMR (75.5 MHz, CDCl3, d ppm): 164.0, 163.7,
141.9, 140.9, 139.4, 135.5, 131.8, 130.4, 128.9, 126.5, 125.8, 122.6,
122.1, 121.7, 119.9, 119.6, 109.0, 44.6, 38.4, 31.0, 30.5, 29.9, 29.7,
29.0, 25.0, 24.4, 23.3, 14.4, 10.9. IR (KBr), n/cmꢀ1: (arene C–H)
3051; (aliphatic C–H) 2955, 2924, 2855; (imide C]O) 1695; (Ar
C]C) 1652, 1584; (imide C–N) 1326, 1259. Anal. Calc. for
C68H64N4O4: C, 81.57; H, 6.44; N, 5.60; O, 6.39%. Found: C,
81.68; H, 7.21; N, 5.03%. MS (MALDI-TOF) m/z ¼ 1000.30
(exact mass ¼ 1000).
Acknowledgements
This research work was supported by FP-7 PEOPLE PRO-
GRAMME, Marie Curie Actions – ITN Grant No. 215884.
A. Swinarew is thanked for MALDI-TOF measurements.
K. Kazalauskas is thanked for the measurements of fluorescence
quantum yields. Asta Sakalyte and Jurate Simokaitiene are
thanked for the TGA and DSC measurements.
1,7-bis(9-ethyl-3-carbazolyl) N,N0-2-ethylhexyl perylene bisi-
mide (3). Yield ¼ 55%; black solid. 1H NMR (300 MHz, CDCl3,
d ppm): 8.69 (s, 2H), 8.33 (b, 4H), 8.01 (d, J ¼ 2.8 Hz, 2H), 7.79–
7.73 (m, 2H), 7.59–7.51 (m, 5H), 7.38 (b, 5H), 4.49–4.42 (m, 4H,
NCH2), 4.27–4.12 (m, 4H, NCH2), 1.99 (b, 2H, CH), 1.55 (t, J ¼
4.8 Hz, 6H, CH3), 1.49–1.28 (m, 16H, CH2), 0.99–0.89 (m, 12H,
CH3). 13C NMR (75.5 MHz, CDCl3, d ppm): 164.1, 163.8, 141.9,
140.6, 140.1, 135.9, 134.9, 132.7, 129.8, 129.3, 128.9, 127.1, 126.9,
126.5, 121.9, 121.5, 109.1, 44.6, 38.3, 38.1, 31.1, 29.1, 24.4, 23.3,
14.4, 14.2, 10.9. IR (KBr), n/cmꢀ1: (arene C–H) 3050; (aliphatic
C–H) 2954, 2925, 2856; (imide C]O) 1695; (Ar C]C) 1656,
1585; (imide C–N) 1327, 1256. Anal. Calc. for C68H64N4O4: C,
81.57; H, 6.44; N, 5.60; O, 6.39%. Found: C, 81.46; H 6.75; N,
5.35%. MS (EI) m/z ¼ 1001(M+). MS (MALDI-TOF) m/z ¼
1000.40 (exact mass ¼ 1000).
References
1 Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953–1010.
2 A. W. Hains, Z. Liang, M. A. Woodhouse and B. A. Gregg, Chem.
Rev., 2010, 110, 6689–6735.
3 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem.
Rev., 2010, 110, 6595–6663.
4 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 2002,
14, 99–117.
5 M. E. Roberts, A. N. Sokolov and Z. Bao, J. Mater. Chem., 2009, 19,
3351–3363.
6 J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder and X. Zhan,
Adv. Mater., 2010, 22, 3876–3892.
7 R. Schmidt, J. H. Oh, Y. Sun, M. Deppisch, A. Krause, K. Radacki,
H. Braunschweig, M. Konemann, P. Erk, Z. Bao and F. Wurthner, J.
Am. Chem. Soc., 2009, 131, 6215–6228.
8 B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, J. Am.
Chem. Soc., 2007, 129, 15259–15278.
1,7-bis(9-ethyl-3-carbazolyl) N,N0-dodecyl perylene bisimide
(4). Yield ¼ 32%; black solid. 1H NMR (300 MHz, CDCl3,
d ppm): 8.54–8.47 (m, 4H), 8.2 (b, 2H), 8.02 (b, 2H), 7.51 (b, 8H),
7.39 (b, 2H), 7.24 (b, 2H), 4.42–4.3 (m, 8H, NCH2), 1.82 (b, 4H,
CH2), 1.52–1.29 (m, 42H, CH2, CH3), 0.93–0.89 (m, 6H, CH3).
13C NMR (75.5 MHz, CDCl3, d ppm): 163.7, 163.4, 141.9, 140.6,
140, 136.6, 135.8, 135, 132.7, 132, 129.9, 129.3, 128.9, 127.1,
126.9, 126.5, 123.2, 122, 121.5, 119.8, 109.1, 100.2, 72.5, 62.1, 41,
38, 32.1, 29.9, 29.8, 29.7, 29.6, 28.4, 27.4, 22.9, 14.4,14.2. IR
(KBr), n/cmꢀ1: (arene C–H) 3051; (aliphatic C–H) 2922, 2851;
(imide C]O) 1694; (Ar C]C) 1655, 1586; (imide C–N) 1331,
1256. Anal. Calc. for C76H80N4O4: C, 81.98; H, 7.24; N, 5.03; O,
5.75%. Found: C, 81.78; H 7.25; N, 4.86%. MS (MALDI-TOF)
m/z ¼ 1112.18 (exact mass ¼ 1112).
9 A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem.
Mater., 2004, 16, 4556–4573.
10 D. M. de Leeuw, M. M. J. Simenon, A. R. Brown and
R. E. F. Einerhand, Synth. Met., 1997, 87, 53–59.
11 Y. Wen and Y. Liu, Adv. Mater., 2010, 22, 1–15.
12 C. R. Newman, C. D. Frisbie, D. A. S. Filho, J. Bredas, P. C. Ewbank
and K. R. Mann, Chem. Mater., 2004, 16, 4436–4451.
13 F. Wurthner, Chem. Commun., 2004, 1564–1579.
14 H. Langhals, Helv. Chim. Acta, 2005, 88, 1309–1343.
15 Y. Avlasevich, C. Li and K. Mullen, J. Mater. Chem., 2010, 20, 3814–
3826.
16 F. Wurthner, Pure Appl. Chem., 2006, 78, 2341–2349.
17 H. Tsuji, C. Mitsui, Y. Sato and E. Nakamura, Adv. Mater., 2009, 21,
3776–3779.
18 Y. L. Liao, C. Y. Lin, Y. H. Liu, K. T. Wong, W. Y. Hung and
W. J. Chen, Chem. Commun., 2007, 1831–1833.
19 W. Y. Hung, T. C. Wang, H. C. Chiu, H. F. Chen and K. T. Wong,
Phys. Chem. Chem. Phys., 2010, 12, 10685–10687.
20 C. Liu, Z. Liu, H. T. Lemke, H. N. Tsao, R. C. G. Naber, Y. Li,
K. Banger, K. Mullen, M. M. Nielsen and H. Sirringhaus, Chem.
Mater., 2010, 22, 2120–2124.
4. Conclusions
21 P. Strohriegl and J. V. Grazulevicius, Adv. Mater., 2002, 14, 1439–1452.
22 J. V. Grazulevicius, P. Strohriegl, J. Pielichowski and K. Pielichowski,
Prog. Polym. Sci., 2003, 28, 1297–1353.
23 S. Beaupre, P. T. Boudreault and M. Leclerc, Adv. Mater., 2010, 22,
E6–E27.
24 J.-F. Morin, M. Leclerc, D. Ades and A. Siove, Macromol. Rapid
Commun., 2005, 26, 761–778.
25 A. Tomkeviciene, J. V. Grazulevicius, K. Kazlauskas, A. Gruodis,
S. Jursenas, T.-H. Ke and C.-C. Wu, J. Phys. Chem. C, 2011, 115,
4887–4897.
In summary, we have designed and synthesized a series of
functional multichromophoric (donor–acceptor–donor) mole-
cular materials based on bay substituted perylene bisimide and
examined their properties. They absorb well in the visible–near
IR region with efficient photo-induced intramolecular charge
transfer. It is found that bay substituents influence the optical
properties and the drift mobility of charge carriers can be tuned
by the proper substitution of electron donors at the bay region.
7818 | J. Mater. Chem., 2011, 21, 7811–7819
This journal is ª The Royal Society of Chemistry 2011