Please do not adjust margins
Green Chemistry
Page 4 of 5
COMMUNICATION
Journal Name
oxidant (Scheme 6a). Pyrrole 2a was isolated in 46% yield and 1a
was recovered in 26% yield using TEMPO as the oxidant (Scheme
6b). Pyrrole 2a was isolated in 95% yield and no 1a was recovered
transformation environmentally friendly.
DOI: 10.1039/C9GC01932D
-
using TEMPO+BF4 as the oxidant (Scheme 6c).
Conflicts of interest
There are no conflicts to declare.
MeO2C
Ph
CO2Me
CO2Me
MeO2C
Ph
CO2Me
CO2Me
Cu(OAc)2.H2O (5.0 equiv)
DMC (1 mL), Ar, 80 oC, 19h
N
a)
b)
c)
N
H
H
1a, 0.30 mmol
2a, 14%
Acknowledgements
We gratefully acknowledged Jiangsu Province (No.
BK20161307 and “333” Talents Project for H. Hu) and Huaiyin
Normal University (No. JSKC18014) for their financial support.
MeO2C
CO2Me
CO2Me
MeO2C
CO2Me
CO2Me
2a, 46%
MeO2C
Ph
CO2Me
TEMPO (5.0 equiv)
DMC (1 mL), Ar, 80 oC, 19h
+
Ph
Ph
N
CO2Me
N
N
H
H
H
1a, 26%
1a, 0.30 mmol
MeO2C CO2Me
Ph CO2Me
1a, 0.30 mmol
MeO2C
CO2Me
CO2Me
2a, 95%
TEMPO+ BF4- (2.5 equiv)
DMC (1 mL), Ar, 80 oC, 19h
N+
Ph
-
N
N
BF4
H
O
H
TEMPO+ BF4
Notes and references
1
(a) S. A. Girard, H. Huang, F. Zhou, G. Deng, C. Li, Org. Chem.
Front., 2015, 2, 279. (b) S. Hati, U. Holzgrabe, S. Sen, Beilstein
J. Org. Chem., 2017, 13, 1670. (c) K. Taniguchi, X. Jin, K.
Yamaguchia, N. Mizuno, Catal. Sci. Technol., 2016, 6, 3929.
(a) Y. Izawa, D. Pun, S. S. Stahl, Science, 2011, 333, 209. (b) A.
V. Iosub, S. S. Stahl, ACS Catal., 2016, 6, 8201. (c) T. Diao, D.
Pun, S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 8205. (d) D.
Pun, T. Diao, S. S. Stahl, J. Am. Chem. Soc., 2013, 135, 8213.
(e) A. V. Iosub, S. S. Stahl, J. Am. Chem. Soc., 2015, 137, 3454.
(f) T. Diao, S. S. Stahl, J. Am. Chem. Soc., 2011, 133, 14566.
(a) W. Zhou, P. Taboonpong, A. Aboo, L. Zhang, J. Jiang, J.
Xiao, Synlett., 2016, 27, 1806. (b) A. V. Iosub, S. S. Stahl, Org.
Lett., 2015, 17, 4404. (c) D. Jung, M. H. Kim, J. Kim, Org. Lett.,
2016, 18, 6300. (d) A. E. Wendlandt, S. S. Stahl, J. Am. Chem.
Soc., 2014, 136, 11910. (e) Y. Wang, C. Li, J. Huang, Asian. J.
Org. Chem., 2017, 6, 44. (f) M. Shimizu, H. Orita, T. Hayakawa,
K. Suzuki, K. Takehira, Heterocycles, 1995, 41, 773. (g) S.
Murahashi, Y. Okano, H. Sato, T. Nakae, N. Komiya, Synlett,
2007, 11, 1675. (h) Z. Zheng, T. H. Trieu, F. Li, X. Zhu, Y. He, Q.
Fan, X. Shi, ACS Omega., 2018, 3, 8243. (i) B. Han, X. Yang, C.
Wang, Y. Bai, T. Pan, X. Chen, W. Yu, J. Org. Chem., 2012, 77,
1136.
(a) B. Li, A. E. Wendlandt, S. S. Stahl, Org. Lett., 2019, 21,
1176. (b) X. Jiang, W. Tang, D. Xue, J. Xiao, C. Wang, ACS
Catal., 2017, 7, 1831. (c) J. Xu, H. Hu, Y. Liu, X. Wang, Y. Kan,
C. Wang, Eur. J. Org. Chem., 2017, 257. (d) W. Wang, J. Han, J.
Sun, Y. Liu., J. Org. Chem., 2017, 82, 2835. (e) A. Taketoshi, A.
Tsujimoto, S. Maeda, T. Koizumi, T. Kanbara, ChemCatChem,
2010, 2, 58. (f) S. Aiki, Y. Kijima, J. Kuwabara, A. Taketoshi, T.
Koizumi, S. Akine, T. Kanbara, ACS Catal., 2013, 3, 812.
(a) P. Liu, Y. Yang, Y. Ju, Y. Tang, Z. Sang, L. Chen, T. Yang, Q.
An, T. Zhang, Y. Luo, Bioorg. Chem., 2018, 80, 422. (b) M.
Menichincheri, C. Albanese, C. Alli, D. Ballinari, A. Bargiotti,
M. Caldarelli, A. Ciavolella, A. Cirla, M. Colombo, F. Colotta, V.
Croci, R. D’Alessio, M. D’Anello, A. Ermoli, F. Fiorentini, B.
Forte, A. Galvani, P. Giordano, A. Isacchi, K. Martina, A.
Molinari, J. K. Moll, A. Montagnoli, P. Orsini, F. Orzi, E.
Pesenti, A. Pillan, F. Roletto, A. Scolaro, M. Tatò, M. Tibolla, B.
Valsasina, M. Varasi, P. Vianello, D. Volpi, C. Santocanale, E.
Vanotti, J. Med. Chem., 2010, 53, 7296. (c) Baraldi, P. G,
Nunez, M. C, Tabrizi, M. A, De Clercq, E, Balzarini, J, Bermejo,
J, Estérez, F, R. Romagnodi, J. Med. Chem., 2004, 47, 2877. (d)
E. Fernandes, D. Costa, S. A. Toste, J. L. Lima, S. Reis, Free.
Radic. Biol. Med., 2004, 37, 1895. (e) S. Bhakta, N. Scalacci, A.
Maitra, A. K. Brown, S. Dasugari, D. Evangelopoulos, T. D.
McHugh, P. N. Mortazavi, A. Twist, E. Petricci, F. Manetti, D.
Castagnolo, J. Med. Chem., 2016, 59, 2780. (f) S. Loya, A.
Rudi, Y. Kashman, A. Hizi, Biochem. J., 1999, 344, 85.
Scheme 6 The control experiments.
Base on above results and previous results, 2,2,6,6-tetramethyl-
1-oxopiperidin-1-ium (TEMPO+) was proven to be an active oxidant
and the copper catalyst could help to regenerate the oxidant under
oxygen gas. Therefore, the suggested mechanism was show in
scheme 7. First, TEMPO was going disproportionation to generate
TEMPOH (2,2,6,6-tetramethylpiperidin-1-ol) and TEMPO+.13 Then,
pyrrolidines was oxidized by TEMPO+ to form imine intermediate
(5).14 Next, intermediate 5 was oxidized by copper(II), TEMPO+ or
oxygen gas to form pyrrole product. Copper(I) was oxidized by
oxygen gas to generate copper(II). At last, copper(II) reacted with
TEMPOH to regenerate TEMPO and copper(I).
2
3
+
H+
+
N+
N
N
OH
O
O
TEMPO+
TEMPO
TEMPOH
R2
R3
R2
R3
TEMPO+
4
5
R1
CO2R
R1
CO2R
- TEMPOH, H+
N
N
H
5
1
R2
R3
CO2R
R2
R3
CO2R
Cu(II), TEMPO+ or O2
R1
R1
N
H
N
5
2
O2
Cu(II)
+
Cu(I)
Cu(II)
+
Cu(I)
N
O
N
OH
Scheme 7 Plausible mechanism.
Conclusions
In summary, a Cu(I)/TEMPO catalyzed aerobic oxidative
dehydrogenative aromatization reaction to synthesize multi-
substituted pyrroles from pyrrolidines has been developed.
This reaction tolerated functional groups well and was easy to
conduct at gram scale. Using cheap and readily available
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins