isomers determined by visible absorption spectroscopy. Fine-
tuning of the molecular interactions in the system to produce a
distinct colour that was easily observed by the naked eye and
quantifiable by optical spectroscopy bodes well for the detec-
tion of such isomer ratios in solid state materials such as liquid
crystals or metal–organic frameworks.
Notes and references
y Crystal data11 for [3][OTf]2.(MeCN)2: C78H88F6N4O22S2, M =
1611.64, T = 173(2) K, monoclinic, space group P21/c, a =
16.268(2), b = 12.443(1), c = 20.841(2) A, b = 110.648(1)1, V =
3947.7(7) A3, rcalc = 1.356 g cmꢀ3, m = 0.158 mmꢀ1, Z = 2,
reflections collected = 36 743 (Rint = 0.0942), final R indices [I 4
2sI]: R1 = 0.0827 , wR2 = 0.2020, R indices (all data): R1 = 0.1275,
wR2 = 0.2400, GoF = 1.015 with data/variables/restraints = 6942/
506/0.
Crystal
data
for
[4][OTf]4.(iPr2O)2(MeCN)2(H2O):
C92H126F12N6O27S4, M = 2104.23, T = 173(2) K, monoclinic, space
group P21/c, a = 13.845(2), b = 36.778(4), c = 20.786(2) A, b =
96.962(2)1, V = 10.506(2) A3, rcalc = 1.330 g cmꢀ3, m = 0.186 mmꢀ1
,
Z = 4, reflections collected = 100 488 (Rint = 0.1698). R indices [I 4
2sI]: R1 = 0.0990, wR2 = 0.2029, R indices (all data): R1 = 0.2350,
wR2 = 0.2715, GoF = 0.999 with data/variables/restraints = 18 466/
1325/348.
Fig. 6 The co-conformers (A and B) of [2]rotaxane flip-switch 7.
1 (a) J. F. Stoddart, Chem. Soc. Rev., 2009, 38, 1802; (b) J.-P. Sauvage,
J.-P. Collin, S. Durot, J. Frey, V. Heitz, A. Sour and C. Tock, C. R.
Chim., 2010, 13, 315; (c) V. Balzani, A. Credi, S. Silvi and
M. Venturi, Chem. Soc. Rev., 2006, 35, 1135; (d) W. R. Dichtel,
O. S. Miljanic, W. Zhang, J. M. Spruell, K. Patel, I. Aprahamian,
J. R. Heath and J. F. Stoddart, Acc. Chem. Res., 2008, 41, 1750.
2 (a) M. A. Olson, A. B. Braunschweig, T. Ikeda, L. Fang,
A. Trabolsi, A. M. Z. Slawin, S. I. Khan and J. F. Stoddart,
Org. Biomol. Chem., 2009, 7, 4391; (b) T. Ye, A. S. Kumar, S. Saha,
T. Takami, T. J. Huang, J. F. Stoddart and P. S. Weiss, ACS Nano,
2010, 4, 3697.
Fig. 7 Left: MeNO2 solutions (10ꢀ3 M) of [2]rotaxanes 5 and 6.
Right: MeNO2 solution (10ꢀ3 M) of [2]rotaxane flip-switch 7.
3 (a) G. J. E. Davidson, S. Sharma and S. J. Loeb, Angew. Chem.,
Int. Ed., 2010, 49, 4938; (b) S. J. Loeb, J. Tiburcio and S. J. Vella,
Chem. Commun., 2006, 1598.
4 (a) D. A. Tramontozzi, N. D. Suhan, S. H. Eichhorn and
S. J. Loeb, Chem.–Eur. J., 2010, 16, 4466; (b) M. A. Bolla,
J. Tiburcio and S. J. Loeb, Tetrahedron, 2008, 64, 8423;
(c) S. J. Vella, J. Tiburcio and S. J. Loeb, Chem. Commun., 2007,
4752; (d) G. J. E. Davidson, S. J. Loeb, P. Passaniti, S. Silvi and
A. Credi, Chem.–Eur. J., 2006, 12, 3233; (e) N. Georges, S. J. Loeb,
J. Tiburcio and J. A. Wisner, Org. Biomol. Chem., 2004, 2, 2751;
(f) G. J. E. Davidson and S. J. Loeb, Dalton Trans., 2003, 4319;
(g) S. J. Loeb and J. A. Wisner, Chem. Commun., 2000, 1939;
(h) S. J. Loeb and J. A. Wisner, Chem. Commun., 2000, 845;
(i) S. J. Loeb and J. A. Wisner, Chem. Commun., 1998, 2757.
5 A. L. Hubbard, G. J. E. Davidson, R. H. Patel, J. A. Wisner and
S. J. Loeb, Chem. Commun., 2004, 138.
6 (a) D. J. Mercer, V. N. Vukotic and S. J. Loeb, Chem. Commun., 2011,
47, 896; (b) V. N. Vukotic and S. J. Loeb, Chem.–Eur. J., 2010, 16,
13630; (c) L. K. Knight, V. N. Vukotic, E. Viljoen, C. B. Caputo and
S. J. Loeb, Chem. Commun., 2009, 5585; (d) S. J. Loeb, Rotaxanes as
Ligands: From Molecules to Materials, in, Organic Nanostructures,
Wiley Science, 2008, ed. J. W. Steed and J. L. Atwood, 33-59;
(e) D. J. Hoffart and S. J. Loeb, Supramol. Chem., 2007, 19, 89;
(f) S. J. Loeb, Chem. Soc. Rev., 2007, 36, 226; (g) S. J. Loeb, Chem.
Commun., 2005, 1511; (h) D. J. Hoffart and S. J. Loeb, Angew. Chem.,
Int. Ed., 2005, 44, 901; (i) G. J. E. Davidson and S. J. Loeb, Angew.
Chem., Int. Ed., 2003, 42, 74.
7 Y. Liu, C.-J. Li, H.-Y. Zhang, L.-H. Wang, Q. Luo and G. Wang,
J. Chem. Phys., 2007, 126, 064705.
8 T. Ikeda, I. Aprahamian and J. F. Stoddart, Org. Lett., 2007, 9, 1481.
9 D. J. Mercer, S. J. Vella, L. Guertin, N. D. Suhan, J. Tiburcio,
V. N. Vukotic, J. A. Wisner and S. J. Loeb, Eur. J. Org. Chem.,
2011, 1763–1770.
Fig. 8 Visible absorption spectrum of [2]rotaxane flip-switch 7 and
simulated contributions from 1–4 (MeNO2 solution at 10ꢀ3 M).
flip-switch 7 prefers co-conformer A over co-conformer B with
a distribution ratio A : B of 60 : 40. In co-conformer A, the
interaction of the most electron-rich crown aromatic ring
containing the MeO groups with the most electron-poor
pyridinium ring presumably stabilizes this arrangement of
the axle and wheel components.
10 In Excel for Chemists, ed. J. E. Billo, John Wiley & Sons, Inc,
New York, 2001.
11 (a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr.,
2008, 64, 112; (b) Diamond (2009) DIAMOND 3.2, CRYSTAL
IMPACT, Postfach 1251, D-53002, Bonn, Germany.
In summary, we have demonstrated that the rapid
equilibration between co-conformers inherent in a [2]rotaxane
flip-switch can be probed and ultimately the distribution of
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5991–5993 5993