T. Vilai6an et al. / Tetrahedron Letters 42 (2001) 9073–9076
Table 2. Indium mediated allylation of aldiminesa
9075
R2
R2
R5
In
R5
N
HN
R1
R1
H
R3
Br
R3 R4
R4
1a-1l
R1
2a-2o
Entry
Imine
Amine
R2
R3 R4 R5
Yield (%)b
Solvent
1
2
3
4
5
6
7
8
1a
1b
1c
1d
1e
1f
1g
1h
1h
1h
1i
2a
2b
2c
2d
2e
2f
2g
2h
2i
2j
2k
2l
2m
2n
2o
3-HOC6H4
4-ClC6H4
4-pyridyl
2-pyridyl
PhCH2
PhCH2
PhCH2
Ph2CH
Ph2CH
Ph2CH
Ph2CH
Ph2CH
Ph2CH
Ph2CH
Ph
H H H
H H H
H H H
H H H
H H H
H H H
H H H
H H H
Ph Me H
Me Me H
Me Me H
H H H
H H H
H H H
H H Me
66
69
50
79
72
61
20
40
62c
30
55
48
76d
74e
74f
EtOH
EtOH
EtOH
MeOH
MeOH
EtOH
MeOH
MeOH
MeOH
MeOH
MeOH
EtOH
iPrOH
iPrOH
iPrOH
2-MeOC6H4
iPr
nC7H15
Ph
9
Ph
Ph
Ph
Ph
Ph
Ph
Ph
10
11
12
13
14
15
1j
1k
1l
(CH3)2CHCH2
(R)-PhCH(Me)
(R)-PhCH(CH2OH)
(R)-PhCH(CH2OH)
1l
a All reactions were performed at 1.0 mmol scale using commercial solvents. No attempts were made to exclude air/moisture.
b Yield refers to isolated yield, all products were characterized by 1H and 13C NMR.
c Obtained as ca. 5:1 mixture of diastereoisomers.
d d.r.=2.5:1, cf. Ref 16, yield 25% d.r.=4:1.
e d.r.>9:1, [h]2D4 −31.4 (c=1.01, CHCl3).
f d.r.>9:1, [h]2D4 −25.9 (c=0.96, CHCl3).
of imines, see: Kobayashi, S.; Busujima, T.; Nagayama,
S. Chem. Commun. 1998, 19–20.
References
16. Beuchet, P.; Le Marrec, N.; Mosset, P. Tetrahedron Lett.
1. Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997,
8, 1895–1946.
1992, 33, 5959–5960.
17. Jin, S. J.; Araki, S.; Butsugan, Y. Bull. Chem. Soc. Jpn.
1993, 66, 1528–1532.
18. Loh, T.-P.; Ho, D. S.-C.; Xu, K.-C.; Sim, K.-Y. Tetra-
2. Bloch, R. Chem. Rev. 1998, 98, 1407–1438.
3. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069–
1094.
4. Laschat, S.; Kunz, H. J. Org. Chem. 1991, 56, 5883–5889.
5. (a) Ohfune, Y.; Hori, K.; Sakitani, M. Tetrahedron Lett.
1986, 27, 6079–6082; (b) Franciotti, M.; Mann, A.; Mor-
dini, A.; Taddei, M. Tetrahedron Lett. 1993, 34, 1355–
1358.
6. Jones, A. D.; Knight, D. W. Chem. Commun. 1996,
915–916.
7. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–
2293 and references cited therein.
8. Cintas, P. Synlett 1995, 1087–1096 and references cited
therein.
9. Chauhan, K. K; Frost, C. G. J. Chem. Soc., Perkin
Trans. 1 2000, 3015–3019.
10. Ranu, B. C. Eur. J. Org. Chem. 2000, 2347–2356.
11. Li, C. J. Tetrahedron 1996, 52, 5643–5668 and references
cited therein.
12. Chan, T. H.; Lu, W. Tetrahedron Lett. 1998, 39, 8605–
8608.
hedron Lett. 1997, 38, 865–868.
19. Choucair, B.; Leon, H.; Mire, M. A.; Lebreton, C.;
Mosset, P. Org. Lett. 2000, 2, 1851–1853.
20. Choudhury, P. K.; Foubelo, F.; Yus, M. J. Org. Chem.
1999, 64, 3376–3378.
21. Tussa, L.; Lebreton, C.; Mosset, P. Chem. Eur. J. 1997, 3,
1064–1070.
22. Cokley, T. M.; Harvey, P. J.; Marshall, R. L.;
McCluskey, A.; Young, D. J. J. Org. Chem. 1997, 62,
1961–1964.
23. Yasuda, M.; Fujibayashi, T.; Baba, A. J. Org. Chem.
1998, 63, 6401–6404.
24. Although the reaction was initially stirred overnight
before work-up, TLC and 1H NMR analysis indicated
that the reaction was complete as soon as the indium
metal had completely dissolved.
25. A trace of the homoallylic alcohol (3) (<5%) was also
observed in the reaction performed in absolute ethanol
(<0.2% water content).
13. Chan, T. H.; Lu, W. J. Org. Chem. 2000, 65, 8589–8594.
14. Kumar, H. M. S.; Anjaneyulu, S.; Reddy, E. J.; Yadav, J.
S. Tetrahedron Lett. 2000, 41, 9311–9314.
15. For a recent example of the successful aqueous allylation
26. A related magnesium-mediated Barbier-type allylation of
aldehydes was found to tolerate water up to a threshold
level (approximately 7% in THF): Li, C.-J.; Zhang, W.-C.
J. Am. Chem. Soc. 1998, 120, 9102–9103.