156
R. Stefanescu, et al.: Antibody Epitope Structure of H1CRD Protein
7. Dotzauer, A., Gebhardt, U., Bieback, K., Gottke, U., Kracke, A.,
MS analysis confirmed that each peptide was binding
independently to the antibody (data not shown).
Mages, J., Lemon, S.M., Vallbracht, A.: Hepatitis A virus-specific
immunoglobulin A mediates infection of hepatocytes with hepatitis A virus
via the asialoglycoprotein receptor. J. Virol. 74, 10950–10957 (2000)
8. Treichel, U., Meyer zum Buschenfelde, K.H., Stockert, R.J., Poralla, T.,
Gerken, G.: The asialoglycoprotein receptor mediates hepatic binding
and uptake of natural hepatitis B virus particles derived from viraemic
carriers. J. Gen. Virol. 75(Pt 11), 3021–3029 (1994)
Conclusions
Proteolytic epitope excision and extraction mass spec-
trometry of an antibody complex of the H1 subunit of the
carbohydrate recognition domain of the asialoglycoprotein
receptor H1CRD provide the identification of the epitope
comprising the N-terminal domain 5T–R23, with proteo-
lytic accessibility observed at the R-16 and R-23 residues.
The primary structure characterisation and identification
of disulfide linkages of H1CRD was found to be an
essential prerequisite for the identification of the antibody
epitope. The epitope recognised by the antibody is located
on the opposite side of the carbohydrate binding site
comprising the sequence 239Gln–Asn264, consistent with
the lack of a neutralising effect of the antibody on
carbohydrate binding; moreover, the epitope binding by
the antibody was ascertained to be independent from the
presence of calcium ions. These results confirm the
feasibility of the B01 antibody as a molecular tool for
the isolation and functional characterisation of carbohy-
drate complexes of H1CRD [5]. Furthermore, proteolytic
epitope excision mass spectrometry is shown here as a
highly efficient approach to reveal molecular details of
antigen–antibody interactions.
9. Meier, M., Bider, M.D., Malashkevich, V.N., Spiess, M., Burkhard, P.:
Crystal structure of the carbohydrate recognition domain of the H1
subunit of the asialoglycoprotein receptor. J. Mol. Biol. 300, 857–865
(2000)
10. Kolatkar, A.R., Leung, A.K., Isecke, R., Brossmer, R., Drickamer, K.,
Weis, W.I.: Mechanism of N-acetylgalactosamine binding to a C-type
animal lectin carbohydrate-recognition domain. J. Biol. Chem. 273,
19502–19508 (1998)
11. Kolatkar, A.R., Weis, W.I.: Structural basis of galactose recognition by
C-type animal lectins. J. Biol. Chem. 271, 6679–6685 (1996)
12. Seimetz, D., Frei, E., Schnolzer, M., Kempf, T., Wiessler, M.: One step
isolation of bovine asialoglycoprotein receptor and its characterization
by sequence analysis and MALDI mass spectrometry. Biosci. Rep. 19,
115–124 (1999)
13. Stokmaier, D., Khorev, O., Cutting, B., Born, R., Ricklin, D., Ernst,
T.O., Boni, F., Schwingruber, K., Gentner, M., Wittwer, M.,
Spreafico, M., Vedani, A., Rabbani, S., Schwardt, O., Ernst, B.:
Design, synthesis and evaluation of monovalent ligands for the
asialoglycoprotein receptor (ASGP-R). Bioorg. Med. Chem. 17,
7254–7264 (2009)
14. Suckau, D., Kohl, J., Karwath, G., Schneider, K., Casaretto, M., Bitter-
Suermann, D., Przybylski, M.: Molecular epitope identification by
limited proteolysis of an immobilized antigen-antibody complex and
mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. U.S.A. 87,
9848–9852 (1990)
15. Papac, D.I., Hoyes, J., Tomer, K.B.: Epitope mapping of the gastrin-
releasing peptide/anti-bombesin monoclonal antibody complex by
proteolysis followed by matrix-assisted laser desorption ionization mass
spectrometry. Protein Sci. 3, 1485–1492 (1994)
16. Glocker, M.O., Nock, S., Sprinzl, M., Przybylski, M.: Characterization
of surface topology and binding area in complexes of the elongation
factor proteins EF-Ts and EF-Tu GDP from Thermus thermophilus. A
study by protein-chemical modification and mass spectrometry. Chem-
istry 4, 707–715 (1998)
17. Fiedler, W., Borchers, C., Macht, M., Deininger, S.O., Przybylski, M.:
Molecular characterization of a conformational epitope of hen egg white
lysozyme by differential chemical modification of immune complexes
and mass spectrometric peptide mapping. Bioconjug. Chem. 9, 236–241
(1998)
Acknowledgements
This study was partially supported by the Deutsche
Forschungsgemeinschaft (Bonn, Germany; PR-175-14-1),
the Roche Research Foundation (Grant for R. Born) and
by the University of Konstanz.
18. Macht, M., Marquardt, A., Deininger, S.O., Damoc, E., Kohlmann, M.,
Przybylski, M.: "Affinity-proteomics": direct protein identification from
biological material using mass spectrometric epitope mapping. Anal.
Bioanal. Chem. 378, 1102–1111 (2004)
19. Stefanescu, R., Iacob, R.E., Damoc, E.N., Marquardt, A., Amstalden,
E., Manea, M., Perdivara, I., Maftei, M., Paraschiv, G., Przybylski, M.:
Mass spectrometric approaches for elucidation of antigenantibody
recognition structures in molecular immunology. Eur. J. Mass Spec-
trom. 13, 69–75 (2007)
20. Kiselar, J.G., Downard, K.M.: Direct identification of protein
epitopes by mass spectrometry without immobilization of antibody
and isolation of antibody-peptide complexes. Anal. Chem. 71, 1792–
1801 (1999)
21. Morrissey, B., Downard, K.M.: Kinetics of antigen-antibody interac-
tions employing a MALDI mass spectrometry immunoassay. Anal.
Chem. 80, 7720–7726 (2008)
22. Zhao, Y., Muir, T.W., Kent, S.B., Tischer, E., Scardina, J.M., Chait, B.
T.: Mapping protein-protein interactions by affinity-directed mass
spectrometry. Proc. Natl. Acad. Sci. U.S.A. 93, 4020–4024 (1996)
23. Born, R.: dissertation, University of Basel; Born, R.; Stokmaier, D.;
Rabbani, R.; Ernst, B. 2009; unpublished results (2008)
References
1. Drickamer, K.: Two distinct classes of carbohydrate-recognition
domains in animal lectins. J. Biol. Chem. 263, 9557–9560 (1988)
2. Stockert, R.J.: The asialoglycoprotein receptor: relationships
between structure, function, and expression. Physiol. Rev. 75,
591–609 (1995)
3. Spiess, M., Lodish, H.F.: Sequence of a second human asialoglycopro-
tein receptor: conservation of two receptor genes during evolution.
Proc. Natl. Acad. Sci. U.S.A. 82, 6465–6469 (1985)
4. Halberg, D.F., Wager, R.E., Farrell, D.C., Hildreth, J.T., Ques-
enberry, M.S., Loeb, J.A., Holland, E.C., Drickamer, K.: Major and
minor forms of the rat liver asialoglycoprotein receptor are
independent galactose-binding proteins. Primary structure and
glycosylation heterogeneity of minor receptor forms. J. Biol. Chem.
262, 9828–9838 (1987)
24. Kussmann, M., Lassing, U., Sturmer, C.A., Przybylski, M.,
Roepstorff, P.: Matrix-assisted laser desorption/ionization mass
spectrometric peptide mapping of the neural cell adhesion protein
neurolin purified by sodium dodecyl sulfate polyacrylamide gel
electrophoresis or acidic precipitation. J. Mass Spectrom. 32, 483–
493 (1997)
5. Khorev, O., Stokmaier, D., Schwardt, O., Cutting, B., Ernst, B.:
Trivalent, Gal/GalNAc-containing ligands designed for the asialoglyco-
protein receptor. Bioorg. Med. Chem. 16, 5216–5231 (2008)
6. Shia, M.A., Lodish, H.F.: The two subunits of the human asialoglyco-
protein receptor have different fates when expressed alone in fibro-
blasts. Proc. Natl. Acad. Sci. U.S.A. 86, 1158–1162 (1989)