1818
A. R. Kunzer, M. D. Wendt / Tetrahedron Letters 52 (2011) 1815–1818
2. (a) Gribble, G. W.; Conway, S. C. Synth. Commun. 1992, 22, 2129–2141; (b)
Gribble, G. W.; Conway, S. C. Heterocycles 1992, 34, 2095–2108.
3. (a) Poirier, M.; Goudreau, S.; Poulin, J.; Savoie, J.; Beaulieu, P. L. Org. Lett. 2010,
12, 2334–2337;; (b) Showalter, H. D. H.; Sercel, A. D.; Leja, B. M.; Wolfangel, C.
D.; Ambroso, L. A.; Elliott, W. L.; Fry, D. W.; Kraker, A. J.; Howard, C. T.; Lu, G. H.;
Moore, C. W.; Nelson, J. M.; Roberts, B. J.; Vincent, P. W.; Denny, W. A.;
Thompson, A. M. J. Med. Chem. 1997, 40, 413–426; (c) Comber, M. F.; Moody, C.
J. Synthesis 1992, 731–733.
4. Recent examples: (a) Ibad, M. F.; Hussain, M.; Abid, O.-U.-R.; Ali, A.; Ullah, I.;
Zinad, D. S.; Langer, P. Synlett 2010, 411–414; (b) Bursavich, M. G.; Brooijmans,
N.; Feldberg, L.; Hollander, I.; Kim, S.; Lombardi, S.; Park, K.; Mallon, R.; Gilbert,
A. M. BMCL 2010, 20, 2586–2590; (c) Ponzi, S.; Habermann, J.; Ferreira, M. del R.
R.; Narjes, F. Synlett 2009, 1395–1400.
the reaction. In the case of 1m, a LC/MS sample taken at 10 min
showed a significant amount of alkynylbromide present in the
reaction mixture. The presence of the methyl group in 1m and
the ring constraints of 1n may slow attack of the anilino N on
the alkynyl bromide, allowing the well-established base-catalyzed
CO2 trapping by the anilino N to become significant.22 This forms
an intermediate that can be quickly trapped by attacking the alky-
nyl bromide group at the benzylic position. Nucleophilic attack at
this position has been demonstrated previously.23 Further, the
geometry of this attack explains why only the Z-isomer products
are observed.
5. Recent examples: (a) Priebbenow, D. L.; Henderson, L. C.; Pfeffer, F. M.; Stewart,
S. G. J. Org. Chem. 2010, 75, 1787–1790; (b) Hussain, M.; Tùng, D. T.; Langer, P.
Synlett 2009, 1822–1826.
In summary, we have developed a novel synthesis for 2-halo-3-
carboxyindoles by heating (2,2-dihalovinyl)arenes in DMSO in the
presence of carbonate base. The reaction is fast and robust to a
wide range of reaction conditions and substrates. The broad func-
tional group tolerance of this transformation is a significant
improvement over the historical Vilsmeier–Haack/oxidation meth-
odology and produces clean products in high yields that can be
easily isolated by simple aqueous work-up. This reaction offers a
novel way to make synthetically important fluorinated indoles, dif-
ferentiated bis-carboxy indoles, and mixed halogen indoles, which
can serve as an entry for both selective and successive cross-cou-
pling chemistries. Recently, the palladium-catalyzed synthesis of
2-bromoindoles, including mixed halogen indoles, was reported.24
Our synthesis eliminates the need for palladium and the added
presence of the 3-carboxy group allows the products described
here to be employed as stable synthons for their corresponding
3-H analogs. Thus, potentially unstable 2-haloindoles are stabilized
and can be readily decarboxylated if desired.25 In addition, we have
discovered a stereospecific synthetic route to the novel 4-[1-bro-
mo-meth-(Z)-ylidene]-1,4-dihydro-benzo[d][1,3]oxazin-2-ones,
and an investigation of optimized reaction conditions for this
underexplored chemotype is ongoing. Given the substantial impor-
tance of indoles in both organic and medicinal chemistry, we be-
lieve this novel transformation will find broad use in the
synthesis of functionalized indoles.
6. Recent examples: (a) Bennasar, M.-L.; Zulaica, E.; Solé, D.; Roca, T.;
Davinia García-Díaz, D.; Alonso, S. J. Org. Chem. 2009, 74, 8359–8368;
(b) Paley, R. S.; Berry, K. E.; Liu, J. M.; Sanan, T. T. J. Org. Chem. 2009,
74, 1611–1620.
7. Recent examples: (a) Tiano, M.; Belmont, P. J. Org. Chem. 2008, 73, 4101–
4109; (b) Black, P. J.; Hecker, E. A.; Magnus, P. Tetrahedron Lett. 2007,
48, 6364–6367.
8. Vieira, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008, 10,
4899–4901.
9. (a) Wang, Z.-J.; Yang, J.-G.; Yang, F.; Bao, W. Org. Lett. 2010, 12, 3034–3037; (b)
Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054–3061.
10. Marchetti, L.; Andreani, A. Ann. Chim. (Rome) 1973, 53, 681–690.
11. (a) Tang, S.; Li, J.-H.; Xie, Y.-X.; Wang, N.-X. Synthesis 2007, 1535–1541; (b)
Yamada, K.; Kanbayashi, Y.; Tomioka, S.; Somei, M. Heterocycles 2002, 57,
1627–1634.
12. Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009,
5236–5238.
13. Ichikawa, J.; Wada, Y.; Fujiwara, M.; Sakoda, K. Synthesis 2002, 1917–1936.
14. Abdou, W. M.; Kamel, A. A. Synth. Commun. 2007, 37, 3945–3960.
15. Minami, T.; Matsumoto, M.; Suganuma, H.; Agawa, T. J. Org. Chem. 1978, 43,
2149–2153.
16. (a) Broutin, P.-E.; Hilty, P.; Thomas, A. W. Tetrahedron Lett. 2003, 44, 6429–
6432; (b) Molina, P.; Conesa, C.; Alías, A.; Arques, A.; Velasco, M. D. Tetrahedron
1993, 49, 7599–7612; (c) Yamamoto, M.; Inaba, S.; Yamamoto, H. Chem. Pharm.
Bull. 1978, 26, 1633–1651;
d Nakatsuka, M.; Okada, S.-i.; Shimano, K.;
Watanabe, S.; Suzuki, Y.; Nishikaku, F. PCT Patent Appl. Publ. WO98/42688,
1998.
17. (a) Okutani, M.; Mori, Y. J. Org. Chem. 2009, 74, 442–444; (b)
Ratovelomanam, V.; Rollin, Y.; Gébéhenne, C.; Gosmini, C.; Périchon, J.
Tetrahedron Lett. 1994, 35, 4777–4780;; (c) Villieras, J.; Perriot, P.;
Normant, J. F. Synthesis 1975, 458–461.
18. (a) Koradin, C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron
2003, 59, 1571–1587; (b) Belley, M.; Scheigetz, J.; Dubé, P.; Dolman, S. Synlett
2001, 222–225; (c) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew.
Chem., Int. Ed. 2000, 39, 2488–2490.
Acknowledgments
19. (a) Kondo, Y.; Shiga, F.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron
1994, 50, 11803–11812; (b) Kondo, Y.; Sakamoto, T.; Yamanaka, H. Heterocycles
1989, 29, 1013–1016.
We are grateful to Jan Waters and Jeffery Cross for NMR confir-
mation of structures for compounds and to Jon Ellman, Yale Uni-
versity, for helpful discussions regarding reaction mechanisms.
20. Ito, Y.; Aoyama, T.; Shioiri, T. Synlett 1997, 1163–1164.
21. Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett. 2010, 12, 3567–3569.
22. (a) Hooker, J. M.; Reibel, A. T.; Hill, S. M.; Schueller, M. J.; Fowler, J. S. Angew.
Chem., Int. Ed. 2009, 48, 3482–3485; (b) Salvatore, R. N.; Chu, F.; Nagle, A. S.;
Kapxhiu, E. A.; Cross, R. M.; Jung, K. W. Tetrahedron 2002, 58, 3329–3347; (c)
Salvatore, R. N.; Shin, S. I.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035–
1037; (d) McGhee, W.; Riley, D.; Christ, K.; Pan, Y.; Parnas, B. J. Org. Chem. 1995,
60, 2820–2830; (e) Butcher, K. J. Synlett 1994, 825–826.
23. Huh, D. H.; Ryu, H.; Kim, Y. G. Tetrahedron 2004, 60, 9857–9862.
24. Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2010, 132, 11416–11417.
25. (a) Morales, C. L.; Pagenkopf, B. L. Org. Lett. 2008, 10, 157–159;; (b)
Böhme, T. M.; Augelli-Szafran, C. E.; Hallak, H.; Pugsley, T.; Serpa, K.;
Schwarz, R. D. J. Med. Chem. 2002, 45, 3094–3102; (c) Biechy, A.; Zard,
S. Z. Org. Lett. 2009, 11, 2800–2803; (d) Miki, Y.; Tsuzaki, Y.; Kai, C.;
Hachiken, H. Heterocycles 2002, 57, 1635–1643.
Supplementary data
Supplementary data (representative procedures and NMR spec-
tra of products) associated with this article can be found, in the on-
References and notes
1. (a) Shen, W.; Kunzer, A. Org. Lett. 2002, 4, 1315–1317; (b) Huh, D. H.; Jeong, J.
S.; Lee, H. B.; Ryu, H.; Kim, Y. G. Tetrahedron 2002, 58, 9925–9932.