K.M. Blake et al. / Inorganica Chimica Acta 373 (2011) 201–210
209
Appendix A. Supplementary material
CCDC 806640, 806639, and 806638 contain the supplementary
crystallographic data for complexes 1, 2, and 3, respectively. These
data can be obtained free of charge from The Cambridge Crystallo-
Supplementary data associated with this article can be found, in
References
[1] C. Janiak, Dalton Trans. (2003) 2781 (and references therein);
U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastré, J.
Mater. Chem. 16 (2006) 626.
[2] (a) L. Pan, D.H. Olson, L.R. Ciemnolonski, R. Heddy, J. Li, Angew. Chem., Int. Ed.
45 (2006) 616;
(b) M. Dinca, A.F. Yu, J.R. Long, J. Am. Chem. Soc. 128 (2006) 8904;
(c) J.L.C. Roswell, O.M. Yaghi, Angew. Chem., Int. Ed. 44 (2005) 4670;
(d) R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C.
Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Nature 436
(2005) 238;
(e) A.C. Sudik, A.R. Millward, N.W. Ockwig, A.P. Côté, J. Kim, O.M. Yaghi, J. Am.
Chem. Soc. 127 (2005) 7110;
(f) X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky,
Science 306 (2004) 1012;
Fig. 8. A plot of
vmT vs T for 3. The thin line indicates the best fit to Eq. (1).
(g) G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan,
Chem. Commun. (2003) 2976;
(h) H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
[3] (a) J.-R. Li, R.J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38 (2009) 1477 (and
references therein);
ꢃ310 and 330 °C. The final mass remnant of 26.1% at 475 °C likely
represents a mixture of CoCO3 (29.2% calc’d) and CoO (18.4%
calc’d). Thermograms for 1–3 are shown in Figs. S2–S4.
(b) A. Cingolani, S. Galli, N. Masciocchi, L. Pandolfo, C. Pettinari, A. Sironi, Chem.
Eur. J. 14 (2008) 9890;
(c) J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature 404 (2000)
982.
4. Conclusions
[4] (a) Q.-R. Fang, G.-S. Zhu, M. Xue, J.-Y. Sun, S.-L. Qiu, Dalton Trans. (2006) 2399;
(b) X.-M. Zhang, M.-L. Tong, H.K. Lee, X.-M. Chen, J. Solid State Chem. 160
(2001) 118;
(c) O.M. Yaghi, H. Li, T.L. Groy, Inorg. Chem. 36 (1997) 4292.
[5] (a) J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem.
Soc. Rev. 38 (2009) 1450 (and references therein);
The sparse structural chemistry of cobalt phenylenediacetate
coordination polymers has been expanded with this study. The
structure of 1 shows that extension of the ortho carboxylate arms
does not appreciably alter coordination polymer dimensionality
from that seen in its previously reported phthalate analog
[Co(pht)(dpe)(H2O)]n. However, the longer arms of the ophda li-
gands appears to promote a monodentate/chelating binding mode,
preventing ‘‘wrap around’’ 1,2-chelation and the exotridentate
binding mode observed in the phthalate species. As a result the
(4,4) grid topology of 1 is based on isolated cobalt atom nodes in-
stead of anti–syn bridged dinuclear {Co2(OCO)2} units. More nota-
bly, the anion-dependent topologies of the cobalt ophda/bpy
coordination polymers 2 and 3 are not only both very rare, but dif-
fer tremendously from those seen in previous cobalt phthalate/bpy
systems. In 2, the exobidentate binding mode of the ophda ligands
and the presence of coordination complex cations and small oxoa-
nions appears to stabilize the uncommon 5-connected bilayer
structure. In 3, the ophda ligands bind in an exotetradentate fash-
ion, allowing them to act as 4-connected nodes in the rarely seen
4,6-connected binodal fsc lattice. Additionally, the pendant car-
boxylate arms of the ophda ligands in 3 construct {Co(OCO)2}n
chain submotifs in which neighboring cobalt ions appear to under-
go ferromagnetic superexchange. In this system, cooperative ef-
fects between acetate arm conformation and binding modes,
along with the length of the dipodal nitrogen tether and the pres-
ence of co-crystallized charged species, act to instill the final coor-
dination polymer topology during self-assembly.
(b) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 38 (2009) 1248 (and references
therein);
(c) S.G. Baca, M.T. Reetz, R. Goddard, I.G. Filippova, Y.A. Simonov, M. Gdaniec,
N. Gerbeleu, Polyhedron 25 (2006) 1215;
(d) H. Han, S. Zhang, H. Hou, Y. Fan, Y. Zhu, Eur. J. Inorg. Chem. 8 (2006) 1594;
(e) C.-D. Wu, A. Hu, L. Zhang, W. Lin, J. Am. Chem. Soc. 127 (2005) 8940;
(f) W. Mori, S. Takamizawa, C.N. Kato, T. Ohmura, T. Sato, Microporous
Mesoporous Mater. 73 (2004) 31;
(g) N. Guillou, Q. Gao, P.M. Forster, J.S. Chang, M. Noguès, S.-E. Park, G. Férey,
A.K. Cheetham, Angew. Chem., Int. Ed. 40 (2001) 2831.
[6] (a) M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38
(2009) 1330 (and references therein);
(b) J. He, J. Yu, Y. Zhang, Q. Pan, R. Xu, Inorg. Chem. 44 (2005) 9279;
(c) S. Wang, Y. Hou, E. Wang, Y. Li, L. Xu, J. Peng, S. Liu, C. Hu, New J. Chem. 27
(2003) 1144;
(d) L.G. Beauvais, M.P. Shores, J.R. Long, J. Am. Chem. Soc. 122 (2000) 2763.
[7] (a) S. Zang, Y. Su, Y. Li, Z. Ni, Q. Meng, Inorg. Chem. 45 (2006) 174;
(b) L. Wang, M. Yang, G. Li, Z. Shi, S. Feng, Inorg. Chem. 45 (2006) 2474.
[8] D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O’Keeffe, O.M. Yaghi, Chem.
Soc. Rev. 38 (2009) 1257 (and references therein).
[9] M. Kurmoo, Chem. Soc. Rev. 38 (2009) 1353 (and references therein).
[10] S. Xiang, X. Wu, J. Zhang, R. Fu, S. Hu, X. Zhang, J. Am. Chem. Soc. 127 (2005)
16352.
[11] X.-Y. Wang, S.C. Sevov, Inorg. Chem. 47 (2008) 1037.
[12] Y.-G. Huang, D.-Q. Yuan, L. Pan, F.-L. Jiang, M.-Y. Wu, X.-D. Zhang, W. Wei, Q.
Gao, J.Y. Lee, J. Li, M.-C. Hong, Inorg. Chem. 46 (2007) 9609.
[13] P. Lightfoot, A. Snedden, J. Chem. Soc., Dalton Trans. (1999) 3549.
[14] C.Y. Sun, L.C. Li, L.P. Jin, Polyhedron 25 (2006) 3017.
[15] S.W. Lee, H.J. Kim, Y.K. Lee, K. Park, J. Son, Y. Kwon, Inorg. Chim. Acta 353
(2003) 151.
[16] M.A. Braverman, R.M. Supkowski, R.L. LaDuca, Inorg. Chim. Acta 360 (2007)
2353.
[17] X.-N. Cheng, W.-X. Zhang, Y.-Y. Lin, Y.-Z. Zheng, X.-M. Chen, Adv. Mater. 19
(2007) 1494.
Acknowledgments
[18] J. Tao, M. Tong, X. Chen, J. Chem. Soc., Dalton Trans. (2000) 3669.
[19] F. Yang, Y. Ren, D. Li, F. Fu, G. Qi, Y. Wang, J. Mol. Struct. 892 (2008) 283.
[20] X. Xie, S. Chen, Z. Xia, S. Gao, Polyhedron 28 (2009) 679.
[21] Z. Chen, Q. Zhao, W. Xiong, Z. Zhang, F. Liang, Z. Anorg. Allg. Chem. 636 (2010)
2691.
[22] K.M. Blake, M.A. Braverman, J.H. Nettleman, L.K. Sposato, R.L. LaDuca, Inorg.
Chim. Acta 363 (2010) 3966.
[23] M.A. Braverman, R.L. LaDuca, Cryst. Growth Des. 7 (2007) 2343.
Funding for this work was provided by the donors of the Amer-
ican Chemical Society Petroleum Research Fund. K.M.B. thanks the
American Chemical Society SUMR program for her participation in
the research. We thank Dr. Rui Huang for performing the elemental
analyses, Ms. Amy Pochodylo for acquiring the magnetic data, and
Mr. Chaun Gandolfo for spectral analysis.