M. Boiko et al. / Spectrochimica Acta Part A 79 (2011) 325–331
331
Table 5
Determination of sulphanilamides in pharmaceuticals; P = 0.95; n = 5.
Tablets
Label claim, g
Amount of drug found, mg
Proposed method
Pharmaceutical method
(nitritometry) [12]
√
√
x
S · t˛/
n
R.S.D., %
x
S · t˛/
n
R.S.D., %
Streptocidum (SA)a
0.5
0.5
0.5
501
501
499
6
5
8
1.0
0.8
1.3
500
501
501
8
7
8
1.3
1.1
1.3
Sulfadimesinum (SMZ)b
Sulfadimethoxinum (SDM)a
a
Marketed by VAT “Monfarm”, Ukraine.
SIC “Borshchahivskiy Chemical-Pharmaceutical Plant” CJSC (BCPP), Kyiv, Ukraine.
b
then treated as described above in the recommended procedure for
the sulphanilamides determination.
[3] Y. Ito, H. Oka, Y. Ikai, H. Matsumoto, Y. Miyazaki, H. Nagase, J. Chromatogr. A
898 (2000) 95–102.
[4] V. Gamba, C. Terzano, L. Fioroni, S. Moretti, G. Dusia, R. Galarinic, Analyt. Chim.
Acta 637 (2009) 18–23.
The assay results are presented in Table 5.
[5] A.F. Forti, G. Scortichini, Analyt. Chim. Acta 637 (2009) 214–219.
[6] C. Hartig, T. Storm, M. Jekel, J. Chromatogr. A 854 (1999) 163–173.
[7] Z. Wang, S. Zhang, I.S. Nesterenko, S.A. Eremin, J. Shen, J. Agric. Food Chem. 55
(2007) 6871–6878.
[8] S. Zhang, Z. Wang, I.S. Nesterenko, S.A. Eremin, J. Shen, Int. J. Food Sci. Technol.
42 (2007) 36–44.
According to Table 5, obtained data were comparable to those
obtained using the official methods of nitritometry for each of the
studied drugs.
[9] I.S. Nesterenko, M.A. Nokel’, S.A. Yeriomin, Zhurn. Analit. Khim. 64 (2009) 1–20.
[10] T.A.M. Msagati, J.C. Ngila, Talanta 58 (2002) 605–610.
[11] A. Wang, F. Gong, H. Li, Y. Fang, Analyt. Chim. Acta 386 (1999) 265–269.
[12] State Pharmacopoeia of Ukraine Add.1, Kharkiv, 2004.
[13] P. Nagaraja, K.R. Sunitha, H.S. Yathirajan, R.A. Vasantha, Ind. J. Pharm. Sci. 65
(2003) 82–84.
[14] E.V. Klokova, S.G. Dmitrienko, Vestn Mosk Un-ta. Ser.2. Khimiya 49 (2008)
339–343.
[15] M.I. Eugeniev, S.Yu. Garmonov, L.Sh. Shakorova, F.S. Levinson, Zhurn. Analit.
Khim. 55 (2000) 888–895.
[16] P. Nagaraja, H.S. Yathirajan, C.R. Raju, R.A. Vasantha, P. Nagendra, M.S.H. Kumar,
Il Farmaco 58 (2003) 1295–1300.
[17] P. Nagaraja, K.R. Sunitha, R.A. Vasantha, H.S. Yathirajan, Ind. Drugs 38 (2001)
489–490.
[18] P. Nagaraja, K.R. Sunitha, R.A. Vasantha, H.S. Yathirajan, Eur. J. Pharm. Biopharm.
53 (2002) 187–192.
[19] P. Nagaraja, H.S. Yathirajan, K.R. Sunitha, R.A. Vasantha, J. Assoc. Off. Anal. Chem.
85 (2002) 869–874.
[20] N.D. Dinesh, P. Nagaraja, K.S. Rangappa, Proc. Natl. Acad. Sci. India 72A (2002)
231–235.
[21] P. Nagaraja, H.S. Yathirajan, K.R. Sunitha, R.A. Vasantha, Anal. Lett. 35 (2002)
1531–1540.
[22] P. Nagaraja, K.R. Sunitha, R.A. Vasantha, H.S. Yathirajan, Ind. J. Pharm. Sci. 64
(2002) 391–393.
[23] N. Yongnian, Q. Zhengbao, S. Kokot, Chemometr. Intell. Lab. Sys. 82 (2006)
241–247.
[24] F.H.M. Vaid, M. Aminuddin, K. Mehmood, Pak. J. Pharm. Sci. 17 (2004) 77–84.
[25] A.S. Amin, G.O. El-Sayed, Y. Missa, Microchem. J. 51 (1995) 367–373.
[26] K.K. Saxena, A.K. Dey, Anal. Chem. 40 (1968) 1280–1285.
[27] R.L. Seth, A.K. Dey, J. Indian Chem. Soc. 40 (1963) 794–796.
[28] O.S. Bonishko, M.V. Polko, O.Ya. Korkuna, T.Ya. Vrublevska, Visn Kharkiv Univ
Ser Khim 15 (38, 770) (2007) 70–75.
[29] M. Rydchuk, M. Boiko, T. Vrublevska, O. Korkuna, O. Tropaeolin, The aspects
of the spectrophotometric application, in: Twelfth Scientific Conference Lviv
Chemical Readings–2009, Lviv, Ukraine, 2009, p. A16.
[30] European Pharmacopoeia (Eur. Ph.), fourth ed., Council of Europe, Strasbourg,
2002.
4. Conclusions
At first the formation of disazo dyes by the interaction of di-
azotized sulphanilamides with acid monoazo dye Tropaeolin O has
been established. Azocoupling occurs due to the cresol group of
second component (TrO), which has compatibly oriented substi-
tutes. Optimum conditions for sulphanilamide, sulphamerazine,
sulphamethazine, sulphadimethoxine, sulphamethoxazole sulpha-
diazine, sulphathiazole, sulphaguanidine, sulphamonomethoxine,
sulphamethoxypyridazine interaction with Tropaeolin O on the
stages of diazotization as well as azocoupling have been inves-
tigated. Spectroscopic and validation characteristics of sulphanil-
amides determination with Tropaeolin O have been established.
The components ratio in the disazo dyes are SA:TrO = 1:1. The
effective molar absorptivity ε595 is ∼104 M−1 cm−1. The proposed
method is found to be simple, rapid, and economical, allows to
determine wide range of SA concentrations (0.4–14.0 g ml−1) and
competes with most of the spectrophotometric methods available
in literature. The method is advantageous over many spectrophoto-
metric methods with special reference to stability and sensitivity.
The statistical parameters and the recovery study data clearly indi-
cate the reproducibility and accuracy of the method. Elaborated
method has been approved during analysis of model solutions and
commercial pharmaceutical preparations. Obtained data were well
correlated to those obtained using the official methods of nitrito-
metry for each of the studied pills. So the recommended procedure
is well-suited for the assay and evaluation of drugs in pharmaceu-
tical preparations to assure high standard of quality control.
[31] K. Venkataraman, The Chemistry of Synthetic Dyes, vol. III, Goskhimizdat,
Leningrad, 1974.
References
[32] B.I. Stepanov, Introduction to the Chemistry and Technology of Organic Dyes,
Khimiya, Moscow, 1977.
[33] H. Zollinger, Chemistry of Azo Dyes, Goskhimizdat, Leningrad, 1960 (Russian
translation).
[1] British Pharmacopoeia, US Pharmacopoeia, XXVI, 2006.
[2] State Pharmacopoeia of Ukraine Add.2, Kharkiv, 2008.