Org. Lett., 2010, 12, 372; (e) S. Aggarwal and H.-J. Knolker, Org.
¨
Biomol. Chem., 2004, 2, 3060; (f) R. Dhawan and B. A. Arndtsen,
J. Am. Chem. Soc., 2004, 126, 468; (g) A. Mizuno, H. Kusama and
N. Iwasawa, Angew. Chem., Int. Ed., 2009, 48, 8318;
(h) V. Cadierno, J. Gimeno and N. Nebra, Chem.–Eur. J., 2007,
13, 9973; (i) R. Martin, M. R. Rivero and S. L. Buchwald, Angew.
Chem., Int. Ed., 2006, 45, 7079; (j) X. Liu, L. Huang, F. Zheng and
Z. Zhan, Adv. Synth. Catal., 2008, 350, 2778; (k) L. Lu, G. Chen
and S. Ma, Org. Lett., 2006, 8, 835; (l) S. Zhang, X. Sun,
W.-X. Zhang and Z. Xi, Chem.–Eur. J., 2009, 15, 12608;
(m) A. S. Demir, M. Emrullahoglu and G. Ardahan, Tetrahedron,
2007, 63, 461; (n) S. Rivera, D. Bandyopadhyay and B. K. Banik,
Tetrahedron Lett., 2009, 50, 5445; (o) T. Sasada, T. Sawada,
R. Ikeda, N. Sakai and T. Konakahara, Eur. J. Org. Chem.,
2010, 4237.
6 (a) J. Zhu and H. Bienayme, Multicomponent Reactions, Wiley-
VCH, Weinheim, Germany, 2005; (b) A. Domling, Chem. Rev.,
¨
2006, 106, 17; (c) D. Tejedor and F. Garcia-Tellado, Chem. Soc.
Rev., 2007, 36, 484; (d) D. J. Ramon and Y. Miguel, Angew. Chem.,
Int. Ed., 2005, 44, 1602.
Scheme 3 Concise synthesis of a highly substituted benz[g]indole.
7 (a) B. M. Trost, Science, 1991, 254, 1471; B. M. Trost, Angew.
Chem., Int. Ed. Engl., 1995, 34, 259; (b) J. C. Wasilke, S. J. Obrey,
R. T. Baker and G. C. Bazan, Chem. Rev., 2005, 105, 1001;
(c) L. F. Tietze, Chem. Rev., 1996, 96, 115; A. J. Wangelin,
H. Neumann, D. Gordes, S. Klaus, D. Strcubing and M. Beller,
Chem.–Eur. J., 2003, 9, 4286.
8 (a) J. Zhu, Eur. J. Org. Chem., 2003, 1133; (b) B. Willy and T. J.
J. Muller, Curr. Org. Chem., 2009, 13, 1777; (c) B. Davide,
R. Rosario and L. Rodolfo, Curr. Org. Chem., 2010, 14, 332;
(d) B. Jiang, T. Rajale, W. Wever, S. Tu and G. Li, Chem.–Asian J.,
2010, 5, 2318.
the presence of Pd(OAc)2 (0.05 eq.), Cu(OAc)2ÁH2O (2.0 eq.),
LiOAc (4.0 eq.), and 4 A molecular sieves in DMAc afforded
benz[g]indole 6a16 in 84% yield. The reaction is proposed to
proceed via a palladium-catalyzed oxidative decarboxylative
coupling reaction of 5a with 1,2-diphenylethyne.17 This
cascade approach to highly substituted benz[g]indoles is
concise and efficient, and the product is a potentially useful
scaffold for the synthesis of biologically active compounds and
photophysical materials.
9 (a) H. Shiraishi, T. Nishitani, S. Sakaguchi and Y. Ishii, J. Org.
Chem., 1998, 63, 6234; (b) R. U. Braun, K. Zeitler and T. J.
J. Muller, Org. Lett., 2001, 3, 3297; (c) Y. Nishibayashi,
M. Yoshikawa, Y. Inada, M. D. Milton, M. Hidai and
S. Uemura, Angew. Chem., Int. Ed., 2003, 42, 2681;
(d) R. Dhawan and B. A. Arndtsen, J. Am. Chem. Soc., 2004,
126, 468; (e) C. V. Galliford and K. A. Scheidt, J. Org. Chem.,
2007, 72, 1811; (f) V. Cadierno, J. Gimeno and N. Nebra,
Chem.–Eur. J., 2007, 13, 9973; (g) D. K. St. Cyr and
B. A. Arndtsen, J. Am. Chem. Soc., 2007, 129, 12366;
(h) V. Nair, A. U. Vinod and C. Rajesh, J. Org. Chem., 2001,
66, 4427; (i) M. Morin, D. J. St-Cyr and B. A. Arndtsen, Org. Lett.,
2010, 12, 4916.
10 V. Estevez, M. Villacampa and J. C. Menendez, Chem. Soc. Rev.,
2010, 39, 4402.
11 S. Lamande-Langle, M. Abarbri, J. Thibonnet, A. Duchene and
J. Parrain, Chem. Commun., 2010, 46, 5157.
12 P. Fontaine, G. Masson and J. Zhu, Org. Lett., 2009, 11, 1555.
13 S. Maiti, S. Biswas and U. Jana, J. Org. Chem., 2010, 75,
1674.
In conclusion, we have developed a one-pot synthesis of
polysubstituted pyrroles via the multicomponent reaction of
primary amines, ethyl glyoxalate and 2-bromoacetophenones.
The reaction involves the assembling of [2 + 1 + 1 + 1] atom
fragments and the formation of four new bonds. The starting
materials are readily available. By combining with a palladium-
catalyzed oxidative decarboxylative coupling reaction, this
chemistry provides a rapid access to a highly substituted
benz[g]indole.
We thank the National Natural Science Foundation of
China (No. 21032005 and 20702047) and Zhejiang Provincial
Natural Science Foundation of China (Y4090028 and
R407106) for financial support of this research.
Notes and references
14 (a) S. L. Cui, X. F. Lin and Y. G. Wang, Org. Lett., 2006, 8, 4517;
(b) Y. G. Wang, S. L. Cui and X. F. Lin, Org. Lett., 2006, 8, 1241;
(c) S. L. Cui, J. Wang, X. F. Lin and Y. G. Wang, J. Org. Chem.,
2007, 72, 7779; (d) S. L. Cui, J. Wang, X. F. Lin and Y. G. Wang,
Org. Lett., 2007, 9, 5023; (e) S. L. Cui, J. Wang and Y. G. Wang,
J. Am. Chem. Soc., 2008, 130, 13526; (f) W. Lu, W. Song, D. Hong,
P. Lu and Y. G. Wang, Adv. Synth. Catal., 2009, 351, 1768;
(g) H. Jin, X. Xu, J. Gao, J. Zhong and Y. G. Wang, Adv. Synth.
Catal., 2010, 352, 347.
1 (a) R. A. Jones, Pyrroles, Part II, Wiley, New York, 1992;
(b) B. A. Trofimov, L. N. Sobenina, A. P. Demenev and
A. I. Mikhaleva, Chem. Rev., 2004, 104, 2481; (c) F. Bellina and
R. Rossi, Tetrahedron, 2006, 62, 7213.
2 R. B. Thompson, FASEB J., 2001, 15, 1671.
3 (a) D. St. C. Black and G. Maas, Science of Synthesis, Georg
Thieme Verlag, Stuttgart, New York, 2001, vol. 9, p. 441;
(b) A. Jones and G. P. Bean, The Chemistry of Pyrroles, Academic
Press, London, 1977.
15 CCDC 798900w.
16 The structure of compound 6a was unambiguously confirmed by
4 (a) A. Hantzsch, Ber. Dtsch. Chem. Ges., 1890, 23, 1474;
(b) L. Knorr, Ber., 1884, 17, 1635; (c) C. Paal, Ber. Dtsch. Chem.
Ges., 1885, 18, 367.
single-crystal X-ray analysis. CCDC 801307w.
5 (a) S. Rakshit, F. Patureau and F. Glorius, J. Am. Chem. Soc.,
2010, 132, 9585; (b) Y. Wang, X. Bi, D. Li, P. Liao, Y. Wang,
J. Yang, Q. Zhang and Q. Liu, Chem. Commun., 2011, 47, 809;
(c) Y. C. Wong, K. Parthasarathy and C. Cheng, J. Am. Chem.
Soc., 2009, 131, 18252; (d) A. Saito, T. Konishi and Y. Hanzawa,
17 For a proposed formation mechanism for the synthesis of benz-
[g]indole 6a please see the ESIw; (a) R. C. Larock and Q. Tian,
J. Org. Chem., 2001, 66, 7372; (b) M. Yamashita, H. Horiguchi,
K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009, 74,
7481.
c
6622 Chem. Commun., 2011, 47, 6620–6622
This journal is The Royal Society of Chemistry 2011