Page 7 of 9
Journal of the American Chemical Society
7. Knowles, R. R.; Jacobsen, E. N. Attractive noncovalent interactions in
asymmetric catalysis: Links between enzymes and small molecule cata-
lysts. Proc. Natl. Acad. Sci. USA 2010, 107, 20678.
8. Breslow, R. Biomimetic Chemistry and Artificial Enzymes: Catalysis by
Design. Acc. Chem. Res. 1995, 28, 146.
1
2
3
4
5
6
7
8
O
H
H
Cp*IrLCl (2.5 mol%)
HN
HFIP/H2O (1:2), 20 oC, 12 h
N
Ph
O
O
Ph
O
1
2
9. Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Exploiting non-co-
valent p interactions for catalyst design. Nature 2017, 543, 637.
10. Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A meta-selective C–H
borylation directed by a secondary interaction between ligand and sub-
strate. Nat. Chem. 2015, 7, 712.
11. Davis, H. J.; Mihai, M. T.; Phipps, R. J. Ion Pair-Directed Regiocontrol
in Transition-Metal Catalysis: A Meta-Selective C–H Borylation of Ar-
omatic Quaternary Ammonium Salts. J. Am. Chem. Soc. 2016, 138,
12759.
Br
Br
O
O
O
Br
O
O
O
N
AQ
N
AQ
N
AQ
Br
N
N
H
N
H
H
O
O
O
9
L16
90% (95:5 er)
L15
91% (92:8 er)
L7
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
97% (96:4 er)
12. Bräse, S., Privileged scaffolds in medicinal chemistry: design, synthesis,
O
O
evaluation. RSC (2015).
13. Rivas, F.; Ling, T. Advances toward the Synthesis of Functionalized γ-
Lactams. Org. Prep. Proced. Int. 2016, 48, 254.
O
O
H
H
N
BnO
N
AQ
AQ
N
O
AQ
N
H
N
N
H
H
O
O
14. Doyle, M. P.; Pieters, R. J.; Taunton, J.; Pho, H. Q.; Padwa, A.; Hertzog,
D. L.; Precedo, L. Synthesis of nitrogen-containing polycycles via rho-
dium(II)-induced cyclization-cycloaddition and insertion reactions of
N-(diazoacetoacetyl)amides. Conformational control of reaction selec-
tivity. J. Org. Chem. 1991, 56, 820.
15. Yoon, C. H.; Zaworotko, M. J.; Moulton, B.; Jung, K. W. Regio- and Ste-
reocontrol Elements in Rh(II)-Catalyzed Intramolecular C−H Inser-
tion of α-Diazo-α-(phenylsulfonyl)acetamides. Org. Lett. 2001, 3, 3539.
16. Yuan, Q.; Liu, D.; Zhang, W. Iridium-Catalyzed Asymmetric Hydro-
genation of β,γ-Unsaturated γ-Lactams: Scope and Mechanistic Studies.
Org. Lett. 2017, 19, 1144.
17. Lang, Q.; Gu, G.; Cheng, Y.; Yin, Q.; Zhang, X. Highly Enantioselective
Synthesis of Chiral γ-Lactams by Rh-Catalyzed Asymmetric Hydro-
genation. ACS Catal. 2018, 8, 4824.
18. Shao, C.; Yu, H.-J.; Wu, N.-Y.; Tian, P.; Wang, R.; Feng, C.-G.; Lin, G.-
Q. Asymmetric Synthesis of β-Substituted γ-Lactams via Rho-
dium/Diene-Catalyzed 1,4-Additions: Application to the Synthesis of
(R)-Baclofen and (R)-Rolipram. Org. Lett. 2011, 13, 788.
19. Pedroni, J.; Cramer, N. Chiral γ-Lactams by Enantioselective Palla-
dium(0)-Catalyzed Cyclopropane Functionalizations. Angew. Chem. Int.
Ed. 2015, 54, 11826.
20. Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M.-H.; Chang, S. Se-
lective formation of γ-lactams via C–H amidation enabled by tailored
iridium catalysts. Science 2018, 359, 1016.
21. Park, Y.; Chang, S. Asymmetric formation of γ-lactams via C–H ami-
dation enabled by chiral hydrogen-bond-donor catalysts. Nature Catal.
2019, 2, 219..
22. During the submission of this work, a related transformation using Ru
catalyst /Noyori type chiral diamine ligand appeared: Xing, Q.; Chan, C.
M.; Yeung, Y. W.; Yu, W. Y. Ruthenium(II)-Catalyzed Enantioselective
γ-Lactams Formation by Intramolecular C–H Amidation of 1,4,2-Diox-
azol-5-ones. J. Am. Chem. Soc. 2019, 141, 3849.
23. Liang, J.-L.; Yuan, S.-X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. Highly Di-
astereo- and Enantioselective Intramolecular Amidation of Saturated
C–H Bonds Catalyzed by Ruthenium Porphyrins. Angew. Chem. Int. Ed.
2002, 41, 3465.
L17
L18
L19
87% (94:6 er)
32% (32:68 er)
25% (34:66 er)
Scheme 5. Performance of L7 analogs with different N-protecting
groups. Yields are based on 1H-NMR analysis of reaction mixture on
a 0.2 mmol scale. Er was determined by HPLC using a chiral column.
multiple attractive non-covalent interactions.
ASSOCIATED CONTENT
Detailed synthetic procedures, compound characterization, NMR spec-
tra, X-ray crystallographic data, and computational details are provided.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
sbchang@kaist.ac.kr, hegang@nankai.edu.cn, gongchen@nan-
kai.edu.cn. The authors declare no competing financial interest.
ACKNOWLEDGMENT
G.C. thanks NSFC-21672105, NSFC-21421062, Laviana, China Post-
doctoral Science Foundation (2018M640225), and the Fundamental
Research Funds for the Central Universities (No. 63191318) for finan-
cial support of the experimental part of this work. G.C. dedicates this
work to the 100th anniversary of Nankai University. S.C. thanks the In-
stitute for Basic Science (IBS-R010-D1) in Republic of Korea for finan-
cial support.
REFERENCES
1. Saint-Denis, T. G.; Zhu, R. Y.; Chen, G.; Wu, Q. F.; Yu, J. Q. Enantiose-
lective C(sp3)–H bond activation by chiral transition metal catalysts.
Science 2018, 359, eaao4798.
2. Davies, H. M.; Manning, J. R. Catalytic C–H functionalization by metal
carbenoid and nitrenoid insertion. Nature 2008, 451, 417.
3. Zheng, C.; You, S.-L. Recent development of direct asymmetric func-
tionalization of inert C–H bonds. RSC Adv. 2014, 4, 6173.
4. Hyster, T. K.; Knörr, L.; Ward, T. R.; Rovis, T. Biotinylated Rh(III)
Complexes in Engineered Streptavidin for Accelerated Asymmetric C–
H Activation. Science 2012, 338, 500.
5. Ye, B.; Cramer, N. Chiral cyclopentadienyl ligands as stereocontrolling
element in asymmetric C–H functionalization. Science 2012, 338, 504.
6. Dydio, P.; Key, H.; Nazarenko, A.; Rha, J.-E.; Seyedkazemi, V.; Clark, D.;
Hartwig, J. An artificial metalloenzyme with the kinetics of native en-
zymes. Science 2016, 354, 102.
24. Reddy, R. P.; Davies, H. M. L. Dirhodium Tetracarboxylates Derived
from Adamantylglycine as Chiral Catalysts for Enantioselective C−H
Aminations. Org. Lett. 2006, 8, 5013.
25. Zalatan, D. N.; Du Bois, J. A Chiral Rhodium Carboxamidate Catalyst
for Enantioselective C−H Amination. J. Am. Chem. Soc. 2008, 130, 9220.
26. Milczek, E.; Boudet, N.; Blakey, S. Enantioselective C–H Amination Us-
ing Cationic Ruthenium(II)–pybox Catalysts. Angew. Chem. Int. Ed.
2008, 47, 6825.
27. Ichinose, M.; Suematsu, H.; Yasutomi, Y.; Nishioka, Y.; Uchida, T.;
Katsuki, T. Enantioselective Intramolecular Benzylic C–H Bond Ami-
nation: Efficient Synthesis of Optically Active Benzosultams. Angew.
Chem., Int. Ed. 2011, 50, 9884.
ACS Paragon Plus Environment