218
S. Muñoz et al. / Inorganica Chimica Acta 373 (2011) 211–218
(c) C. Pettinari, R. Pettinari, Coord. Chem. Rev. 249 (2005) 663;
Unit-cell parameters were determined from 59 193 (L), 217 (1),
(d) A.L. Gavrilova, B. Bosnich, Chem. Rev. 104 (2004) 349;
(e) V.V. Grushin, Chem. Rev. 104 (2004) 1629;
(f) P. Braunstein, J. Organomet. Chem. 689 (2004) 3953;
(g) R.W. Date, E.F. Iglesias, K.E. Rowe, J.M. Elliott, D.W. Bruce, Dalton Trans.
(2003) 1914;
(h) X. Morise, P. Braunstein, R. Welter, Inorg. Chem. 42 (2003) 7752;
(h) C.J. Elsevier, J. Reedijk, P.H. Walton, M.D. Ward, Dalton Trans. (2003) 1869–
1880.;
(i) N. Robertson, L. Cronin, Coord. Chem. Rev. 227 (2002) 93;
(j) R. Mukherjee, Coord. Chem. Rev. 203 (2000) 151;
(k) E. Lindler, T. Schneller, F. Auer, H.A. Mayer, Angew. Chem., Int. Ed. 38 (1999)
2155;
4197 (2) and 85 535 (3) reflections [2 < h < 28 (L), 3 < h < 31 (1),
3 < h < 30 (2) and 2 < h < 29 (3)] and refined by least-squares
method.
For L, 59 193 reflections were measured in the range
1.84 < h < 27.48 and 12 649 of them were non-equivalent by sym-
metry [Rint (on I) = 0.0996]. Eight thousand one hundred and five
reflections were assumed as observed applying the condition
I > 2r (I). Lorentz-polarisation and multi-scan absorption correc-
tions were made.
For 1, 16 405 reflections were measured in the range
1.52 < h < 30.00 and 8410 of them were non-equivalent by symme-
try [Rint (on I) = 0.0347]. Eight thousand four hundred and ten
reflections were assumed as observed applying the condition
(l) G. La Monica, G.A. Ardizzoia, Prog. Inorg. Chem. 46 (1997) 151;
(m) S. Trofimenko, Prog. Inorg. Chem. 34 (1986) 115;
(n) S. Trofimenko, Chem. Rev. 72 (1972) 497.
[2] (a) G. Aragay, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-Bardia,
J. Ros, Aust. J. Chem. 63 (2010) 257;
(b) M. Guerrero, J. Pons, T. Parella, M. Font-Bardia, T. Calvet, J. Ros, Inorg. Chem.
48 (2009) 8736;
I > 2
made.
r(I). Lorentz-polarisation but no absorption corrections were
(c) M. Guerrero, J. Pons, V. Branchadell, T. Parella, X. Solans, M. Font-Bardia, J.
Ros, Inorg. Chem. 47 (2008) 11084;
(d) G. Aragay, J. Pons, J. García-Antón, X. Solans, M. Font-Bardia, J. Ros, J.
Organomet. Chem. 693 (2008) 3396;
For 2, 16 505 reflections were measured in the range
2.92 < h < 29.99 and 4799 of them were non-equivalent by symme-
try [Rint (on I) = 0.0455]. Four thousand five hundred and forty five
(e) S. Muñoz, J. Pons, X. Solans, M. Font-Bardia, J. Ros, J. Organomet. Chem. 693
(2008) 2132;
(f) M. Espinal, J. Pons, J. García-Antón, X. Solans, M. Font-Bardia, J. Ros, Inorg.
Chim. Acta 361 (2008) 2648;
reflections were assumed as observed applying the condition I > 2
r
(I). Lorentz-polarisation but no absorption corrections were made.
For 3, 85 535 reflections were measured in the range
2.21 < h < 28.52 and 9190 of them were non-equivalent by symme-
try [Rint (on I) = 0.0495]. Seven thousand five hundred and seventy
seven reflections were assumed as observed applying the condition
(g) A. de León, J. Pons, J. García-Antón, X. Solans, M. Font-Bardia, J. Ros, Inorg.
Chim. Acta 360 (2007) 2071;
(h) A. Panella, J. Pons, J. García-Antón, X. Solans, M. Font-Bardia, J. Ros, Eur. J.
Inorg. Chem. (2006) 1678.
[3] (a) M. Guerrero, J. Pons, M. Font-Bardia, T. Calvet, J. Ros, Aust. J. Chem. 63
(2010) 958;
I > 2
r (I). Lorentz-polarisation and multi-scan absorption correc-
(b) V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-
Bardia, J. Ros, Organometallics 27 (2008) 1084;
tions were made.
The structures of L, 1–3 were solved by direct methods, using
SHELXS-97 computer program [17] and refined by full-matrix least-
squares method with SHELXL-97 computer program [18], using
59 193 (L), 16 405 (1), 16 505 (2) and 85 535 (3) reflections. The
(c) V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-
Bardia, J. Ros, J. Fluorine Chem. 128 (2007) 1007;
(d) V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-
Bardia, J. Ros, Organometallics 26 (2007) 3183;
(e) V. Montoya, J. Pons, V. Branchadell, J. García-Antón, X. Solans, M. Font-
Bardia, J. Ros, Inorg. Chim. Acta 360 (2007) 625;
(f) A. Boixassa, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 357
(2004) 733–738.;
function minimised was
R
w||FO|2 ꢁ |FC|2|2, where w = [
r
2(I) +
(0.0691P)2]ꢁ1 (L), w = [
r
2(I) + (0.0200P)2 + 2.0772P]ꢁ1 (1), w =
[r r
2(I) + (0.0709)2 + 1.3269P]ꢁ1 (2) and w = [ 2(I) + (0.0515P)2 +
(g) A. Boixassa, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim. Acta 355
(2003) 254;
(h) J. García-Antón, J. Pons, X. Solans, M. Font-Bardia, J. Ros, Eur. J. Inorg. Chem.
(2003) 2992;
(i) A. Boixassa, J. Pons, A. Virgili, X. Solans, M. Font-Bardia, J. Ros, Inorg. Chim.
Acta 340 (2002) 49.
4.9940P]ꢁ1 (3). For the four crystalline structures P = (|FO|2 + 2
|FC|2)/3.
All hydrogen atoms were computed using a riding model, ex-
cept the O-bound H atoms in L, which were located in the Fourier
map and allowed to refine freely with a refined common Uiso ther-
mal parameter of 0.069(3) Å2. The refined O–H distances in that
structure range from 0.90(2)–0.93(2) Å. The rest of the parameters
refined and other details concerning the refinement of the crystal
structures are gathered in Table 3.
[4] (a) F. Bondavelli, O. Bruno, A. Ranise, P. Schenone, D. Donnoli, M. Cenicola, C.
Matera, S. Russo, E. Marmo, Farmaco 44 (1989) 655;
(b) F. Bondavalli, O. Bruno, A. Ranise, P. Schenone, P. Addonizio, V. DeNovellis,
A. Loffreda, E. Marmo, Farmaco, Edizione Scientifica 43 (1988) 725.
[5] Hai-Ling Liu, Huan-Feng Jiang, Min Zhang, Wen-Juan Yao, Quin Hua Zhu, Zhon
Tang, Tetrahedron Lett. 49 (2008) 3805.
[6] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry,
McGrawHill, London, UK, 1995.
[7] F.H. Allen, Acta Crystallogr., Sect. B 58 (2002) 380.
[8] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
Supplementary material
[9] D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry,
McGrau-Hill, London, UK, 1995;
Crystallographic data for the structural analysis has been depos-
ited with the Cambridge Crystallographic Data Centre, CCDC refer-
ence number 794898 for compound L, 794899 for compound 1,
794900 for compound 2 and 794901 for compound 3. Copies of this
information may be obtained free of charge from The Director,
E. Pretch, T. Clerc, J. Seibl, W. Simon, Tables of Determination of Organic
Compounds. 13C NMR, 1H NMR IR, MS, UV/Vis, Chemical Laboratory Practice,
Springer, Berlin, Germany, 1989.
[10] (a) A.R. Katritzky, C.W. Rees, Comprehensive Heterocyclic Chemistry: The
Structure, Reactions, Synthesis, Uses of Heterocyclic Compounds, Pergamon
Press, Oxford, UK, 1984;
CCDC, 12 Union Road, Cambridge, CB2 1EZ. UK: fax:
+ 44
(b) D. Carmona, L.A. Oro, M.P. Lamala, J. Elguero, M.C. Apreda, C. Foces-Foces,
F.H. Cano, Angew. Chem., Int. Ed. Engl. 25 (1986) 1114.
[11] C.J. O’Connor, Prog. Inorg. Chem. 29 (1982) 203.
[12] L. Merz, W. Haase, J. Chem. Soc., Dalton Trans. (1980) 875.
[13] B.A. Goodman, J.B. Raynor, Adv. Inorg. Chem. 13 (1970) 135.
[14] (a) Z. You, W. Liu, H. Zhu, Transition. Met. Chem. 39 (2004) 653;
(b) C.A. Bear, J.M. Waters, T.N. Waters, J. Chem. Soc., Dalton Trans. (1974) 1059;
(c) E. Sinn, W.T. Robinson, J. Chem. Soc., Chem. Commun. 6 (1972) 359.
[15] SIGMAPLOT, Program for Tabulating, Modelling and Displaying Data (v. 8.02), SPSS
Inc., Chicago IL, USA, 2002.
[16] S. Komiya, in: Synthesis of Organometallic Compounds: A Practice Guide, Ed.
Board, New York, USA, 1997.
[17] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination,
University of Göttingen, Germany, 1997.
[18] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University
of Göttingen, Germany, 1997.
1223336033; e-mail: diposit@ccdc.cam.acuk or www.htpp://
Acknowledgements
Support by the Spanish Ministerio de Educacion y Cultura (pro-
jecte CTQ2007-63913 BQU) and the UK Engineering and Physical
Sciences Research Council is gratefully acknowledged. In memory
of Prof. Xavier Solans i Huguet
References
[1] (a) M.A. Halcrow, Dalton Trans. (2009) 2059;
(b) C. Pettinari, R. Pettinari, Coord. Chem. Rev. 249 (2005) 525;