S. Kunii and M. Sawamura, Nat. Chem., 2010, 2, 972;
(c) J. K. Park, H. H. Lackey, B. A. Ondrusek and
D. T. McQuade, J. Am. Chem. Soc., 2011, 133, 2410.
4 For reviews, see: (a) J. A. Schiffner, K. Muther and M. Oestreich,
¨
Angew. Chem., Int. Ed., 2010, 49, 1194; (b) A. Bonet, C. Sole,
H. Gulyas and E. Fernandez, Curr. Org. Chem., 2010, 14, 2531;
´
(c) L. Mantini and C. Mazet, ChemCatChem, 2010, 2, 501. For
catalytic asymmetric conjugate borations, see: ; (d) S. Mun,
J.-E. Lee and J. Yun, Org. Lett., 2006, 8, 4887; (e) J.-E. Lee
and J. Yun, Angew. Chem., Int. Ed., 2008, 47, 145;
Scheme 1 Catalytic asymmetric b-boration of b-aryl-substituted
a,b-unsaturated sulfones.
(f) W. J. Fleming, H. Muller-Bunz, V. Lillo, E. Ferna
´
ndez and
P. J. Guiry, Org. Biomol. Chem., 2009, 7, 2520; (g) V. Lillo, A. Prieto,
A. Bonet, M. M. Dıaz-Requejo, J. Ramırez, P. J. Perez and
E. Fernandez, Organometallics, 2009, 28, 659; (h) I.-H. Chen,
¨
Despite b-aryl-substituted a,b-unsaturated sulfones showing
poorer reactivity in the model b-boration reaction of 1a, and
especially 1b, with the catalyst system CuCl/(Æ)-Binap, we
briefly explored the reactivity of this type of substrates under
the enantioselective version conditions (Scheme 1). The negative
influence of aromatic substituents at the b-position on the
reactivity was confirmed in the reaction of 1a with the
CuI/Josiphos (10 mol%) catalyst system. The product (R)-3a
was isolated in moderate yield (50%) due to incomplete
conversion (70%), but with high asymmetric induction
(91% ee). Noteworthily, electron-rich aromatic substituents at
the b-position tend to give higher yields, while maintaining the
high enantiocontrol, as exemplified by the substrate 16a bearing a
4-methoxyphenyl group (product 18a, 72% yield, 89% ee). In
contrast, electron-poor aromatic substituents such as a 4-trifluoro-
methylphenyl group (substrate 17a) seem to make the substrate
inert in this reaction (product 19a, not detected).
´
´
´
´
L. Yin, W. Itano, M. Kanai and M. Shibasaki, J. Am. Chem. Soc.,
2009, 131, 11664; (i) H.-S. Sim, X. Feng and J. Yun, Chem.–Eur. J.,
2009, 15, 1939; (j) X. Feng and J. Yun, Chem. Commun., 2009, 6577;
(k) H. Chea, H.-S. Sim and J. Yun, Adv. Synth. Catal., 2009, 351, 855;
(l) H. Kim and J. Yun, Adv. Synth. Catal., 2010, 352, 1881;
(m) D. Hirsch-Weil, K. A. Abboud and S. Hong, Chem. Commun.,
2010, 46, 7525; (n) X. Feng and J. Yun, Chem.–Eur. J., 2010, 16,
13609; (o) J. M. O’Brien, K.-s. Lee and A. H. Hoveyda, J. Am. Chem.
Soc., 2010, 132, 10630; (p) J. K. Park, H. H. Lackey, M. D. Rexford,
K. Kovnir, M. Shatruk and D. T. McQuade, Org. Lett., 2010, 12,
5008; (q) I.-H. Chen, M. Kanai and M. Shibasaki, Org. Lett., 2010,
12, 4098; (r) C. Sole, A. Whiting, H. Gulyas and E. Ferna
Synth. Catal., 2011, 353, 376.
´
ndez, Adv.
5 For NHC-copper-catalyzed boron–copper addition to unactivated
olefins and alkynes with B2pin2, see, respectively: (a) Y. Lee and
A. H. Hoveyda, J. Am. Chem. Soc., 2009, 131, 3160; (b) Y. Lee,
H. Jang and A. H. Hoveyda, J. Am. Chem. Soc., 2009, 131, 18234.
6 H. Ito, H. Yamanaka, J.-i. Tateiwa and A. Hosomi, Tetrahedron
Lett., 2000, 41, 6821.
7 (a) K. Takahashi, T. Ishiyama and N. Miyaura, Chem. Lett., 2000,
982; (b) K. Takahashi, T. Ishiyama and N. Miyaura, J. Organomet.
Chem., 2001, 625, 47.
8 For the rhodium-catalyzed enantioselective b-boration of a,b-
unsaturated carbonyl compounds, see: (a) T. Shiomi, T. Adachi,
K. Toribatake, L. Zhou and H. Nishiyama, Chem. Commun., 2009,
5987. For metal-free catalytic asymmetric b-borations, see:
In conclusion, this work provides the first methodology
for the asymmetric b-boration of a,b-unsaturated sulfones
via conjugate addition of bis(pinacolato)diboron catalyzed
by CuI/Josiphos complexes. Upon in situ oxidation of the
boronate, the corresponding b-hydroxy sulfones are produced
in good yields and high enantioselectivities (typically in the
range 85–95% ee). Broad structural scope and wide functional
group tolerance have been demonstrated, especially with
b-alkyl-substituted substrates. Novel applications and extension
of this chemistry are currently underway in our laboratory.
(b) A. Bonet, H. Gulya
Int. Ed., 2010, 49, 5130.
9 (a) N. S. Simpkins, Sulphones in Organic Synthesis, Pergamon
Press, Oxford, 1993; (b) J. C. Carretero, R. Gomez Arrayas and
s and E. Fernandez, Angew. Chem.,
´ ´
´
´
J. Adrio, in Sulfones in Asymmetric Catalysis, ed. T. Toru and
C. Bolm, Wiley-VCH, Weinheim, 2008, ch. 9, pp. 291–320.
10 Enantioenriched b-hydroxy sulfones are typically accessed by
asymmetric reduction of b-ketosulfones. See for instance:
(a) B. T. Cho and D. J. Kim, Tetrahedron: Asymmetry, 2001, 12,
2043; (b) V. Gotor, F. Rebolledo and R. Liz, Tetrahedron:
Asymmetry, 2001, 12, 513; (c) G. Zhao, J.-B. Hu, Z.-S. Quian
and W.-X. Yin, Tetrahedron: Asymmetry, 2002, 13, 2095;
(d) H.-L. Zhang, X.-L. Hou, L.-X. Dai and Z.-B. Luo, Tetra-
hedron: Asymmetry, 2007, 18, 224.
´
e Innovacion
We thank the Ministerio de Ciencia
´
´
(MICINN, CTQ2009-07791) and the Consejerıa de Educacion
de la Comunidad de Madrid (programme AVANCAT, S2009/
PPQ-1634) for financial support. A.L.M. thanks the
UAM for a predoctoral fellowship. We thank Solvias AG
(Dr H.-U. Blaser and Dr B. Pugin, Solvias ligand-kit) and
Takasago (Dr T. Touge, Segphos and DTBM-Segphos) for
generous loans of chiral ligands.
11 A competitive experiment, in which an equimolar mixture of
substrates 2a and 2b was subjected to the reaction with B2pin2
under the optimized conditions with the Cu–Josiphos catalyst
system, revealed that the 2-pyridylsulfone 2b displayed a slightly
Notes and references
1 For recent general reviews, see: (a) Contemporary Boron Chemistry,
ed. M. Davidson, A. K. Hughes, T. B. Marder and K. Wade, RSC,
Cambridge, 2000; (b) C. M. Crudden, B. W. Glasspoole and
C. J. Lata, Chem. Commun., 2009, 6704.
2 For examples on recent applications of chiral boronates:
(a) D. Imao, B. W. Glasspoole, V. S. Laberge and
C. M. Crudden, J. Am. Chem. Soc., 2009, 131, 5024; (b) S. Nave,
R. P. Sonawane, T. G. Elford and V. K. Aggarwal, J. Am. Chem.
Soc., 2010, 132, 17096; (c) S. M. Winbush and W. R. Roush, Org.
Lett., 2010, 12, 4344; (d) J. Chang, H. Lee and D. G. Hall, J. Am.
Chem. Soc., 2010, 132, 5544.
higher rate than the parent 2a (k
/k
= 1.2). In contrast,
2-PySO2 PhSO2
the opposite tendency was observed when this experiment was
performed with an equimolar mixture of the b-phenyl-substituted
substrates 1a and 1b under identical conditions (k2-PySO /kPhSO = 0.4).
2
2
These values are in concordance with the results shown in Table 1.
12 The absolute configuration of the b-hydroxy phenyl sulfones was
determined by comparison of the [a]D values with those of known
compounds. The same absolute stereochemistry of the 2-pyridyl
sulfones was confirmed by X-ray crystallographic analysis of a
recrystallized 97% ee sample of compound (R)-10b. See ESIw for
details. CCDC 818353 contains the supplementary crystallo-
graphic data for this paper.
3 Recent examples: (a) H. Ito, T. Okura, K. Matsuura and
M. Sawamura, Angew. Chem., Int. Ed., 2010, 49, 560; (b) H. Ito,
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6701–6703 6703