and 2010CB833305) and the Chinese Academy of Sciences
for the financial support. The post doctoral fellowship to
Dr Shahid Hameed by Higher Education Commission of
Pakistan is also greatly acknowledged.
Notes and references
1 (a) V. I. Parvulescu and C. Hardacre, Chem. Rev., 2007, 107, 2615;
(b) C. D. Hubbard, P. Illner and R. V. Eldik, Chem. Soc. Rev.,
2011, 40, 272; (c) P. Wasserscheid, Transition metal catalysis in
ionic liquids, in Green Solvents Ionic Liquids, ed. P. Wasserscheid
and A. Stark, Wiley-VCH, Weiheim, 2010, vol. 6; (d) M. A.
P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta and
H. G. Bonacorso, Chem. Rev., 2008, 108, 2015.
Fig. 2 Proposed transition state of the Michael reaction of 2-oxindole
with vinyl selenone promoted by catalyst 3i.
2 (a) A. Berkessel and H. Groger, Asymmetric Organo-
catalysis—From Biomimetic Concepts to Applications in
Asymmetric Synthesis, Wiley-VCH, Weinheim, 2004; (b) B. List,
Chem. Commun., 2006, 819; (c) M. S. Taylor and E. N. Jacobsen,
Angew. Chem., Int. Ed., 2006, 45, 1520; (d) D. W. C. MacMillan,
Nature, 2008, 455, 304; (e) S. Bertelsen and K. A. Jørgensen, Chem.
Soc. Rev., 2009, 38, 2178.
3 (a) S. Toma, M. Meciarova and R. Sebesta, Eur. J. Org. Chem.,
2009, 321; (b) J. C. Plaquevent, J. Levillain, F. Guillen, C. Malhiac
and A. C. Gaumont, Chem. Rev., 2008, 108, 5035.
4 (a) R. T. Dere, R. R. Pal, P. S. Patil and M. M. Salunkhe,
Tetrahedron Lett., 2003, 44, 5351; (b) R. R. Pal, R. T. Dere,
P. S. Patil, B. V. SubbaReddy and M. M. Salunkhe, Lett. Org.
Chem., 2009, 6, 332.
5 (a) J. W. Lee, J. Y. Shin, Y. S. Chun, H. B. Jang, C. E. Song and
S. G. Lee, Acc. Chem. Res., 2010, 43, 985; (b) R. Bini, C. Chiappe,
E. Marmugi and D. Pieraccini, Chem. Commun., 2006, 897.
6 (a) C. Marti and E. M. Carreira, Eur. J. Org. Chem., 2003, 2209;
(b) P. A. S. Smith, J. Am. Chem. Soc., 1984, 106, 4069;
(c) S. Hibino and T. Choshi, Nat. Prod. Rep., 2001, 18, 66;
(d) L. E. Overman and D. V. Paone, J. Am. Chem. Soc., 2001,
123, 9465.
7 Selected examples, see: (a) X. Li, S. Luo and J.-P. Cheng,
Chem.–Eur. J., 2010, 16, 14290; (b) Q. Zhu and Y. Lu, Angew.
Chem., Int. Ed., 2010, 49, 7753; (c) R. J. He, C. H. Ding and
K. Maruoka, Angew. Chem., Int. Ed., 2009, 48, 4559; (d) T. Bui,
S. Syed and C. F. Barbas, J. Am. Chem. Soc., 2009, 131, 8758;
(e) R. He, S. Shirakawa and K. Maruoka, J. Am. Chem. Soc., 2009,
131, 16620; (f) Y. Kato, M. Furutachi, Z. Chen, H. Mitsunuma,
S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2009,
131, 9168.
8 For selected examples, see: (a) F. Marini, S. Sternativo, F. Del
Verme, L. Testaferri and M. Tiecco, Adv. Synth. Catal., 2009,
351, 1801; (b) M. Tiecco, L. Testaferri, A. Temperini, R. Terlizzi,
L. Bagnoli, F. Marini and C. Santi, Org. Biomol. Chem., 2007,
5, 3510; (c) M. Tiecco, A. Carlone, S. Sternativo, F. Marini,
G. Bartoli and P. Melchiorre, Angew. Chem., Int. Ed., 2007,
46, 6882.
Scheme 1 Applications of the methodology.
of the enolate-anion intermediate of the 2-oxindole.13 The
approach of an activated a,b-unsaturated selenone to the
enolate anion from the Re-face resulted in the formation of
a R-selective product.
The products
4 could readily undergo nucleophilic
substitution reaction with NaN3 and NaI. For example, starting
from (ꢀ)-4a (95% ee), the substitution products 5a and 5b
were obtained in 83% and 86% overall yields both with 93%
ee, respectively (Scheme 1). Followed by reduction and
cyclization, (+)-5b was further transformed to pyrroloindoline
(+)-6 in overall yield 73% with 96% ee. It is noteworthy that
many optically active compounds with a pyrroloindoline unit
(7), such as (ꢀ)-physostigmine, show wide biological activities
and have been clinically used as medicines.14
9 F. Marini, S. Sternativo, F. D. Verme, L. Testaferri and M. Tiecco,
Adv. Synth. Catal., 2009, 351, 103.
10 For the pioneering work catalyzed by C60–OH Cinchona alkaloids,
see: H. Li, Y. Wang, L. Tang and L. Deng, J. Am. Chem. Soc.,
2004, 126, 9906.
11 T. Okino, Y. Hoashi and Y. Takemoto, J. Am. Chem. Soc., 2003,
125, 12672.
12 For the pioneering work of Cinchona alkaloid-based thioureas, see:
(a) S. H. McCooey and S. J. Connon, Angew. Chem., Int. Ed., 2005,
44, 6367; (b) B. Vakulya, S. Varga, A. Csampai and T. Soos, Org.
Lett., 2005, 7, 1967; (c) J. Ye, D. J. Dixon and P. S. Hynes, Chem.
Commun., 2005, 4481.
13 For a comprehensive mechanistic study on bifunctional catalysis of
Cinchona alkaloids in 1,4-addition, see: H. Hiemstra and
H. Wynberg, J. Am. Chem. Soc., 1981, 103, 417.
14 (a) P. R. Sanchis, S. A. Savina, F. Albericio and M. Alvarez,
Chem.–Eur. J., 2011, 17, 1388; (b) T. Matsuura, L. E. Overman and
D. J. Poon, J. Am. Chem. Soc., 1998, 120, 6500; (c) K. Asakawa,
N. Noguchi, S. Takashima and M. Nakada, Tetrahedron:
Asymmetry, 2008, 19, 2304.
In summary, we have developed a novel organocatalytic
enantioselective Michael addition of 2-oxindoles to vinyl
selenone, which was promoted by a Cinchona alkaloid-based
thiourea in RTILs. High to excellent yields and enantio-
selectivities were obtained. The developed approach could
readily access chiral pyrroloindoline-type compounds. The
investigation of the Michael addition to other nucleophiles
in RTILs is underway in our lab.
We thank the National Natural Science Foundation of China,
Ministry of Science and Technology (nos 2009ZX09501-006
c
6646 Chem. Commun., 2011, 47, 6644–6646
This journal is The Royal Society of Chemistry 2011