LETTER
Crabbé Homologation Applied to the Synthesis of 1,3-Disubstituted Allenes
1131
O
the case of entry 4 (1a/2c/3b/CuI = 1:2.3:1.8:0.2, 64%
yield; cf. 1:1.5:1.5:0.1, 43% yield, Table 3). The acety-
lenes having a siloxy or tosylamido group at the propar-
gylic position also reacted with aldehydes 2b or 2c to give
the corresponding allenes in 35–64% yields (Table 3, en-
tries 7–10). The reactions including phenylacetylene or
benzaldehyde as the reaction component furnished the de-
sired products in lower yields (Table 3, entries 11 and 12),
which might be predictable based on the results shown in
Table 2. The results of the reaction using other amines
than dicyclohexylamine were in good agreement with the
previously reported tendency in the original Crabbé reac-
tion.1,3,4 Thus, the use of diisopropylamine resulted in a
lower yield of the allene, and both reactions using mor-
pholine and dibenzylamine afforded only a trace amount
of the desired product (Scheme 2).
+
+
R2NH
H
Ph
1a
2b
3a,c,d
CuI (0.1 equiv)
Ph
toluene
MW, 200 °C
5ab
3a R = i-Pr2NH
3c R = morpholine
3d R = Bn2NH
37%
trace
trace
Scheme 2 One-pot preparation of 5ab using various amines 3
the inexpensive copper(I) iodide in high yields similar to
the already reported methods,6–8 especially when the pro-
pargylamines have aliphatic substituents on the acetylene
terminus and the propargylic position.
In conclusion, we have shown that the transformation of
propargylamines into 1,3-disubstituted allenes as well as
the one-pot reaction from alkynes, aldehydes, and amines
(Crabbé homologation) nicely proceeded by applying the
MW irradiation conditions. The presence of excess alde-
hydes and amines versus the alkynes is crucial for the
allene-forming reaction. The newly developed methods
can provide allenes using only 0.1 or 0.2 equivalents of
References and Notes
(1) (a) Crabbé, P.; Fillion, H.; André, D.; Luche, J.-L. J. Chem.
Soc., Chem. Commun. 1979, 859. (b) Crabbé, P.; André, D.;
Fillion, H. Tetrahedron Lett. 1979, 893. (c) Fillion, H.;
André, D.; Luche, J.-L. Tetrahedron Lett. 1980, 929.
(d) Searles, S.; Li, Y.; Lopes, M.-T. R.; Tran, P. T.; Crabbé,
P. J. Chem. Soc., Perkin Trans. 1 1984, 747.
(2) For recent reviews, see: (a) Ogasawara, M. Tetrahedron:
Asymmetry 2009, 20, 259. (b) Brummond, K. M.;
DeForrest, J. E. Synthesis 2007, 795. (c) Modern Allene
Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-VCH:
Weinheim, 2004.
(3) Nakamura, H.; Sugiishi, T.; Tanaka, Y. Tetrahedron Lett.
2008, 49, 7230.
(4) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763.
(5) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.;
Bertrand, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569.
(6) Kuang, J.; Ma, S. J. Am. Chem. Soc. 2010, 132, 1786.
(7) Nakamura, H.; Ishikura, M.; Sugiishi, T.; Kamakura, T.;
Biellmann, J.-F. Org. Biomol. Chem. 2008, 6, 1471.
(8) (a) Lo, V. K.-Y.; Wong, M.-K.; Che, C.-M. Org. Lett. 2008,
10, 517. (b) Lo, V. K.-Y.; Zhou, C.-Y.; Wong, M.-K.; Che,
C.-M. Chem. Commun. 2010, 46, 213. (c) Melchionna, M.;
Nieger, M.; Helaja, J. Chem. Eur. J. 2010, 16, 8262.
(9) For the synthesis of substituted allenes from propargyl
ethers, see: Bolte, B.; Odabachian, Y.; Gagosz, F. J. Am.
Chem. Soc. 2010, 132, 7294.
Table 3 One-Pot Preparation of 5 from 1, 2, and 3ba
R1
CuI (0.1 equiv)
O
R1
+
+
Cy2NH
toluene (0.5 M)
MW, 200 °C
R2
H
R2
1
2
3b
5
Entry
1
R1
2
R2
Time Yield of 5
(h)
(%)
1b
2
1a PhCH2CH2
1a PhCH2CH2
1a PhCH2CH2
2b n-Pr
2b n-Pr
2b n-Pr
2
5ab 40
5ab 50
5ab 38
5ac 64
5bb 43
5cb 50
5eb 60
5ec 61
5fb 35
5fc 64
5ad 31
5db 14
2
3c
15
3.5
2.5
1.5
2
4d,e 1a PhCH2CH2
2c
i-Pr
5
1b Me(CH2)5
2b n-Pr
2b n-Pr
6
1c
1e
1e
1f
TBSO(CH2)5
(10) For reviews of catalytic three-component coupling of
alkyne, aldehyde, and amine, see: (a) Kouznetsov, V. V.;
Méndez, L. Y. V. Synthesis 2008, 491. (b) Zani, L.; Bolm,
C. Chem. Commun. 2006, 4263. (c) Wei, C.; Li, Z.; Li, C.-J.
Synlett 2004, 1472.
7
n-C7H15CH(OTBS) 2b n-Pr
n-C7H15CH(OTBS) 2c i-Pr
n-C7H15CH(NHTs) 2b n-Pr
n-C7H15CH(NHTs) 2c i-Pr
1a PhCH2CH2 2d Ph
1d Ph 2b n-Pr
8d
9
3.5
1
(11) For selected examples of Cu(I)-catalyzed three-component
10d,e 1f
1.25
2.5
5
coupling of alkyne, aldehyde, and amine, see:
11e,f
12g
(a) Gommermann, N.; Koradin, C.; Knochel, P. Angew.
Chem. Int. Ed. 2003, 42, 5763. (b) Gommermann, N.;
Knochel, P. Chem. Eur. J. 2006, 12, 4380. (c) Shi, L.; Tu,
Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Org. Lett. 2004,
6, 1001. (d) Sreedhar, B.; Reddy, P. S.; Prakash, B. V.;
Ravindra, A. Tetrahedron Lett. 2005, 46, 7019. (e) Sasaki,
N.; Uchida, N.; Konakahara, T. Synlett 2008, 1515.
(f) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org.
Chem. 2009, 74, 7052. (g) Bariwal, J. B.; Ermolat’ev, D. S.;
Glasnov, T. N.; Van Hecke, K.; Mehta, V. P.; Van Meervelt,
L.; Kappe, C. O.; Van der Eycken, E. V. Org. Lett. 2010, 12,
2774.
a Aldehyde 2 and amine 3b (each 1.5 equiv) were used.
b Aldehyde 2b and amine 3b (each 1 equiv) were used.
c Reaction was performed using CuI (1 equiv) in refluxing toluene
without MW heating.
d Aldehyde 2c (2.3 equiv) and amine 3b (1.8 equiv) were used.
e CuI (0.2 equiv) was used.
f The reaction was performed at 150 °C.
g The reaction was performed at 150 °C for 3 h and at 165 °C for 2 h.
Synlett 2011, No. 8, 1129–1132 © Thieme Stuttgart · New York