N. Nair et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3957–3961
3961
References and notes
1. Lopes, J. P.; Oliveira, C. R.; Agostinho, P. Cell Cycle 2009, 8, 97.
2. Raina, A. K.;Monteiro, M. J.; McShea, A.; Smith, M. A. Int. J. Exp. Pathol. 1999, 80, 71.
3. Endo, R.; Saito, T.; Asada, A.; Kawahara, H.; Ohshima, T.; Hisanaga, S.-I. J. Biol
Chem 2009, 284, 26029.
4. Hisanaga, S.-I.; Endo, R. J. Neurochem. 2010, 115, 1309.
5. Kamei, H.; Saito, T.; Ozawa, M.; Fujita, Y.; Asada, A.; Bibb, J. A.; Saido, T. C.;
Sorimachi, H.; Hisanaga, S.-I. J. Biol. Chem. 2007, 282, 1687.
6. Lopes, J. P.; Oliveira, C. R.; Agostinho, P. Aging Cell 2010, 9, 64.
7. Tian, B.; Yang, Q.; Mao, Z. Nat. Cell Biol. 2009, 11, 211.
8. Patrick, G. N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L. H.
Nature 1999, 402, 615.
9. Piedrahita, D.; Hernandez, I.; Lopez-Tobon, A.; Fedorov, D.; Obara, B.;
Manjunath, B. S.; Boudreau, R. L.; Davidson, B.; LaFerla, F.; Gallego-Gomez, J.
C.; Kosik, K. S.; Cardona-Gomez, G. P. J. Neurosci. 2010, 30, 13966.
10. Laha, J. K.; Zhang, X.; Qiao, L.; Liu, M.; Chatterjee, S.; Robinson, S.; Kosik, K. S.;
Cuny, G. D. Bioorg. Med. Chem. Lett. 2011, 21, 2098.
11. Glicksman, M. A.; Cuny, G. D.; Liu, M.; Dobson, B.; Auerbach, K.; Stein, R. L.;
Kosik, K. S. Curr. Alzheimer Res. 2007, 4, 547.
12. Ahn, J. S.; Radhakrishnan, M. L.; Mapelli, M.; Choi, S.; Tidor, B.; Cuny, G. D.;
Musacchio, A.; Yeh, L.-A.; Kosik, K. S. Chem. Biol. 2005, 12, 811.
13. Kanungo, J.; Zheng, Y.-I.; Amin, N. D.; Pant, H. C. Cell. Mol. Neurobiol. 2009, 29,
1073.
14. Hamdane, M.; Bretteville, A.; Sambo, A.-V.; Schindowski, K.; Begard, S.;
Delacourte, A.; Bertrand, P.; Buee, L. J. Cell Sci. 2005, 118, 1291.
15. Sausville, E. A. Trends Mol. Med. 2002, 8, S32.
16. Helal, C. J.; Kang, Z.; Lucas, J. C.; Gant, T.; Ahlijanian, M. K.; Schachter, J. B.;
Richter, K. E. G.; Cook, J. M.; Menniti, F. S.; Kelly, K.; Mente, S.; Pandit, J.; Hosea,
N. Bioorg. Med. Chem. Lett. 2009, 19, 5703.
17. Jain, P.; Flaherty, P. T.; Yi, S.; Chopra, I.; Bleasdell, G.; Lipay, J.; Ferandin, Y.;
Meijer, L.; Madura, J. D. Bioorg. Med. Chem. 2011, 19, 359.
18. Zheng, Y.-L.; Amin, N. D.; Hu, Y.-F.; Rudrabhatla, P.; Shukla, V.; Kanungo, J.;
Kesavapany, S.; Grant, P.; Albers, W.; Pant, H. C. J. Biol. Chem. 2010, 285, 34202.
19. Akue-Gedu, R.; Debiton, E.; Ferandin, Y.; Meijer, L.; Prudhomme, M.; Anizon, F.;
Moreau, P. Bioorg. Med. Chem. 2009, 17, 4420.
20. Beauchard, A.; Ferandin, Y.; Frere, S.; Lozach, O.; Blairvacq, M.; Meijer, L.;
Thiery, V.; Besson, T. Bioorg. Med. Chem. 2006, 14, 6434.
21. Beauchard, A.; Laborie, H.; Rouillard, H.; Lozach, O.; Ferandin, Y.; Le Guevel, R.;
Guguen-Guillouzo, C.; Meijer, L.; Besson, T.; Thiery, V. Bioorg. Med. Chem. 2009,
17, 6257.
22. Helal, C. J.; Sanner, M. A.; Cooper, C. B.; Gant, T.; Adam, M.; Lucas, J. C.; Kang, Z.;
Kupchinsky, S.; Ahlijanian, M. K.; Tate, B.; Menniti, F. S.; Kelly, K.; Peterson, M.
Bioorg. Med. Chem. Lett. 2004, 14, 5521.
23. Bettayeb, K.; Sallam, H.; Ferandin, Y.; Popowycz, F.; Fournet, G.; Hassan, M.;
Echalier, A.; Bernard, P.; Endicott, J.; Joseph, B.; Meijer, L. Mol. Cancer Ther.
2008, 7, 2713.
Figure 6. Expanded view of the compound 7–CDK5/p25 complex, showing
hydrogen bonds to Lys89, Ile10, Asn144 and Gln130.
molecule has a different pose and interacts strongly with a differ-
ent set of CDK5 residues except for Gln130. It shows three strong
H-bonding interactions with Asn144, Lys89, backbone carbonyl
of Ile10, and relatively weaker interaction with Gln130.
Compound 9 shows the same binding pose as compound 7, as
expected from the structural similarities. The relative binding
energies for Roscovitine (2), and compounds 7 and 9 are À48.1,
À44.8, and À33.3 kcal/mol, respectively, which correlates well
with the PI assay. The similar binding energies for Roscovitine (2)
and compound 7 are in accordance with their comparable neuro-
protective effects (Fig. 3), whereas the much lower binding energy
for the compound 9 is consistent with its ineffectiveness in enzyme
binding observed in our experiments (Fig. 3). The difference in
binding energies for compounds 7 and 9 comes mainly from the
larger desolvation penalty needed to bury the pentafluorophenyl
group of compound 9 as compared to the o-fluorophenyl group
of compound 7. This desolvation penalty difference, calculated
using an implicit solvation model (Poisson–Boltzmann), is about
9 kcal/mol and accounts for most of the reduction in binding en-
ergy of compound 9.
24. Otyepka, M.; Bartova, I.; Kriz, Z.; Koca, J. J. Biol. Chem. 2006, 281, 7271.
25. Oumata, N.; Bettayeb, K.; Ferandin, Y.; Demange, L.; Lopez-Giral, A.; Goddard,
M.-L.; Myrianthopoulos, V.; Mikros, E.; Flajolet, M.; Greengard, P.; Meijer, L.;
Galons, H. J. Med. Chem. 2008, 51, 5229.
26. Basso, A. D.; Doll, R. J. Recent Pat. Anti-Cancer Drug Discovery 2006, 1, 357.
27. Krystof, V.; Uldrijan, S. Curr. Drug Targets 2010, 11, 291.
28. Malumbres, M.; Pevarello, P.; Barbacid, M.; Bischoff, J. R. Trends Pharmacol. Sci.
2008, 29, 16.
In summary, we have found that our o-fluorophenylmethyl de-
rived triazole, 7, effectively suppressed Ab-induced neurotoxicity
in hippocampal slice cultures, while the pentafluoroaryl derived
triazole 9 has virtually no neuroprotective effect. Importantly,
the neuroprotective effect of compound 7 is comparable to Flavo-
piridol (1) and Roscovitine (2). These results suggest our newly
synthesized compound 7 as a therapeutic candidate for AD and
other neurological disorders. Indeed, DarwinDock/GenDock dock-
ing calculations show that the Roscovitine (2) and the triazoles 7
and 9 all bind at the same active site region of the CDK5/p25 com-
plex. The comparable neuroprotective effect of Roscovitine (2) and
compound 7 is reflected in their similar binding affinities, whereas
the unfavorably low binding affinity for compound 9 makes it prac-
tically inefficient neuroprotector. These docking simulations also
support the involvement of the CDK5/p25 complex in the cell cycle
re-entry, a leading cause of the neuronal degeneration.
29. Wang, L. M.; Ren, D. M. Mini-Rev. Med. Chem. 2010, 10, 1058.
30. Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C. T. J. Enzyme Inhib. Med. Chem.
2003, 18, 303.
31. Anzahaee, M. Y.; Watts, J. K.; Alla, N. R.; Nicholson, A. W.; Damha, M. J. J. Am.
Chem. Soc. 2011, 133, 728.
32. Dubowchik, G. M.; Vrudhula, V. M.; Dasgupta, B.; Ditta, J.; Chen, T.; Sheriff, S.;
Sipman, K.; Witmer, M.; Tredup, J.; Vyas, D. M.; Verdoorn, T. A.; Bollini, S.;
Vinitsky, A. Org. Lett. 2001, 3, 3987.
33. Di Magno, S. G.; Sun, H. Curr. Top. Med. Chem. 2006, 6, 1473.
34. Boehm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Mueller, K.; Obst-
Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
35. Shah, P.; Westwell, A. D. J. Enzyme Inhib. Med. Chem. 2007, 22, 527.
36. Pallas, M.; Canudas, A. M.; Verdaguer, E.; Allgaier, C.; Garcia de Arriba, S.; Alvira,
D.; Sureda, F. X.; Camins, A. Curr. Med. Chem. Cent. Nerv. Syst. Agents 2005, 5, 101.
37. Rizzolio, F.; Tuccinardi, T.; Caligiuri, I.; Lucchetti, C.; Giordano, A. Curr. Drug
Targets 2010, 11, 279.
38. Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207.
39. Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
40. Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325.
41. Camins, A.; Verdaguer, E.; Folch, J.; Canudas, A. M.; Pallas, M. Drug News
Perspect. 2006, 19, 453.
42. DerHovanessian, A.; Rablen, P. R.; Jain, A. J. Phys. Chem. A 2000, 104, 6056.
43. Alvira, D.; Ferrer, I.; Gutierrez-Cuesta, J.; Garcia-Castro, B.; Pallas, M.; Camins,
A. Parkinsonism Relat. Disord. 2008, 14, 309.
Supplementary data
44. Floriano, W. B.; Vaidehi, N.; Zamanakos, G.; Goddard, W. A., III J. Med. Chem.
2004, 47, 56.
45. Goddard, W. A.; Kim, S.-K.; Li, Y.; Trzaskowski, B.; Griffith, A. R.; Abrol, R. J.
Struct. Biol. 2010, 170, 10.
46. Mapelli, M.; Massimiliano, L.; Crovace, C.; Seeliger, M. A.; Tsai, L.-H.; Meijer, L.;
Musacchio, A. J. Med. Chem. 2005, 48, 671.
Supplementary data (computational methodology, neuronal
cytotoxicity studies, and synthesis of compounds) associated with
this article can be found, in the online version, at doi:10.1016/