Taigo Kashiwabara and Masato Tanaka
COMMUNICATIONS
phenylglyoxyl chloride (1a; 169.2 mg, 1.0 mmol) and 1-
octyne (2A; 74 mL, 0.5 mmol) and the mixture was stirred at
608C for 24 h. After cooling to room temperature, n-tetrade-
cane (14.6 mg; internal standard for GC analysis) was added
to the resulting mixture. After GC analysis, which showed
the formation of (Z)-3aA in 70% yield, the mixture was
evaporated and 1,1,2,2-tetrachloroethane (9.9 mg; internal
standard for NMR analysis) was added. After NMR analy-
sis, the mixture was evaporated once again and the residue
was subjected to column chromatography (silica gel, hexane/
acetone=95/5) to furnish (Z)-3aA; yield: 66%; yellow oil.
1H NMR (300 MHz, CDCl3): d=7.97 (d, J=1.45 Hz, 2H, o-
Ph), 7.62 (t, J=1.90 Hz, 1H, p-Ph), 7.48 (d, J=1.45 Hz, 2H,
m-Ph), 6.70 (s, 2H, CH), 2.53 (t, J=6.27 Hz, 2H, C-5), 1.65
(quint, J=7.29 Hz, 2H, C-6), 1.36–1.27 (br-m, 6H, C-7, C-8,
C-9), 0.88 (t, J=6.78 Hz, 3H, C-10); 13C{1H} NMR (75 MHz,
CDCl3): d=192.0 (CO), 190.6 (CO), 154.9 (C-4), 134.4 (p-
C), 132.3 (ipso-C in Ph), 130.1 (o-C), 128.7 (m-C), 121.0 (C-
3), 41.6 (C-5), 31.3 (C-8), 28.2 (C-7), 27.2 (C-6), 22.4 (C-9),
13.9 (C-10); IR (neat): n=1726 (nCO), 1674 (nCO), 1597 cmÀ1
I. G. Dinulescu, M. Avram, Rev. Roum. Chim. 1984, 29,
201; g) R. A. Haack, K. R. Beck, Tetrahedron Lett.
1989, 30, 1605; h) D. Manoiu, M. Manoiu, I. G. Dinu-
lescu, M. Avram, Rev. Roum. Chim. 1984, 29, 671; i) D.
Manoiu, M. Manoiu, I. G. Dinulescu, M. Avram, Rev.
Roum. Chim. 1985, 30, 223; j) H. Martens, F. Janssens,
G. Hoornaert, Tetrahedron 1975, 31, 177; k) W. R.
Benson, A. E. Pohland, J. Org. Chem. 1964, 29, 385;
l) J. P. Clayton, A. W. Guest, A. W. Taylor, R. Ramage,
J. Chem. Soc. Chem. Commun. 1979, 500; m) H. Zhou,
C. Zeng, L. Ren, W. Liao, X. Huang, Synlett 2006,
3504.
[4] T. Kashiwabara, M. Tanaka, Organometallics 2011, 30,
239.
[5] a) H. des Abbayes, J.-Y. Salaꢁn, Dalton Trans. 2003,
1041. For representative examples, see for Mn: b) J. B.
Sheridan, G. L. Geoffroy, A. L. Rheingold, J. Am.
Chem. Soc. 1987, 109, 1584; Fe: c) J. B. Sheridan, S.-H.
Han, G. L. Geoffroy, J. Am. Chem. Soc. 1987, 109,
8097; Ru: d) K. A. Johnson, W. L. Gladfelter, Organo-
metallics 1992, 11, 2534; Pd: e) A. Sen, J.-T. Chen,
W. M. Vetter, R. R. Whittle, J. Am. Chem. Soc. 1987,
109, 148; f) F. Ozawa, T. Sugimoto, T. Yamamoto, A.
Yamamoto, Organometallics 1984, 3, 692; Pt: g) Y.-J.
You, J.-T. Chen, M.-C. Cheng, Y. Wang, Inorg. Chem.
1991, 30, 3621; Ir: h) D. M. Blake, A. Vinson, R. Dye,
J. Organomet. Chem. 1981, 204, 257. Rh-COCOOR
was also documented, see ref.[3b]
(nC C); GC-MS (70 eV): m/z (% relative intensity)=278
=
([M]+, 5), 250 (26), 201 (15), 173 (16), 132 (62), 105 (100),
77 (34); HR-MS (EI): m/z=278.1069, calcd. for C16H19ClO2:
278.1074. An NOE experiment displayed 12.2% enhance-
ment of the vinylic proton signal (d=6.70 ppm) upon irradi-
ation at the allylic proton signal (2.53 ppm), indicative of cis
addition having taken place.
[6] For selected examples of synthetic applications of a-
oxo-b,g-unsaturated carbonyl compounds, see: a) H.
Sugimura, K. Yoshida, J. Org. Chem. 1993, 58, 4484;
b) E. Brown, G. Dujardin, M. Maudet, Tetrahedron
1997, 53, 9679; c) H. Audrain, J. Thorhauge, R. G.
Hazell, K. A. Jørgensen, J. Org. Chem. 2000, 65, 4487.
[7] For a review, see: A. E. Pohland, W. R. Benson, Chem.
Rev. 1966, 66, 161.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Re-
search on Priority Areas (No.18065008) from MEXT, Japan,
and by a research fellowship to T.K. from JSPS.
[8] The rhodium-catalyzed chlorinative dimerization of ter-
minal alkynes has been reported separately: T. Kashi-
wabara, K. Fuse, T. Muramatsu, M. Tanaka, J. Org.
Chem. 2009, 74, 9433.
References
[1] a) J. Tsuji, K. Ohno, J. Am. Chem. Soc. 1966, 88, 3452;
b) M. C. Baird, J. T. Mague, J. A. Osborn, G. Wilkinson,
J. Chem. Soc. A 1967, 1347; c) J. Blum, E. Oppenheim-
er, E. D. Bergmann, J. Am. Chem. Soc. 1967, 89, 2338;
d) J. K. Stille, M. T. Regan, J. Am. Chem. Soc. 1974, 96,
1508.
[9] Coordination of two electron donor ligands to Rh-
AHCTUNGTRENN(GUN acac)(CO)2 has been reported, see: a) A. M. Trzeciak,
J. J. Ziꢂłkowski, J. Mol. Catal. 1983, 19, 41; b) V. K.
Krylov; Y. N. Kukushkin; V. K. Oshorova, Zh. Prikl.
Khim. 1991, 64, 1771; c) A. M. Trzeciak, J. J. Ziꢂłkow-
ski, R. Choukroun, J. Mol. Catal. A: Chemical 1996,
110, 135; d) Y. Yuan, Y. Zhang, C. Zhong, H. Zhang,
K. Tsai, Wuli Huaxue Xuebao 1998, 14, 1013.
[2] K. Kokubo, K. Matsumasa, M. Miura, M. Nomura, J.
Org. Chem. 1996, 61, 6941.
[3] a) R. Hua, S. Shimada, M. Tanaka, J. Am. Chem. Soc.
1998, 120, 12365; b) R. Hua, S.-y. Onozawa, M.
Tanaka, Chem. Eur. J. 2005, 11, 3621; c) T. Kashiwa-
bara, K. Kataoka, R. Hua, S. Shimada, M. Tanaka,
Org. Lett. 2005, 7, 2241; d) T. Kashiwabara, K. Fuse, R.
Hua, M. Tanaka, Org. Lett. 2008, 10, 5469. Lewis acid-
catalyzed addition reactions of acid chlorides with al-
kynes have been reported. However, the major prod-
ucts are usually (E)-isomers with some exceptions
forming mixtures of (E)- and (Z)-isomers, see: e) D.
Manoiu, M. Manoiu, I. G. Dinulescu, M. Avram, Rev.
Roum. Chim. 1984, 29, 193; f) D. Manoiu, M. Manoiu,
[10] For details, see the Supporting Information.
[11] As for the insertion pathway, chloro-rhodation (vs.
acyl-rhodation) is more realistic on the basis of prece-
dent observations, as discussed in our and Miura-No-
muraꢃs previous papers, see: refs.[2,3b–d]
[12] An arylacetyl-iridium complex undergoes decarbonyla-
tion more easily when the aryl group is substituted by
an electron-donating group, see: M. Kubota, D. M.
Blake, S. A. Smith, Inorg. Chem. 1971, 10, 1430.
1490
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2011, 353, 1485 – 1490