Table 3 Pd-catalyzed cross-coupling of hydrazine with 2-alkynyl-
bromoarenesa
2009, 131, 11049; (c) Q. Shen and J. F. Hartwig, J. Am. Chem. Soc.,
2006, 128, 10028; (d) D. S. Surry and S. L. Buchwald, J. Am. Chem.
Soc., 2007, 129, 10354; (e) T. Schulz, C. Torborg, S. Enthaler,
B. Schaffner, A. Dumrath, A. Spannenberg, H. Neumann,
A. Borner and M. Beller, Chem.–Eur. J., 2009, 15, 4528;
(f) R. J. Lundgren, B. D. Peters, P. G. Alsabeh and
M. Stradiotto, Angew. Chem., Int. Ed., 2010, 49, 4071.
4 For selected reviews see: (a) D. S. Surry and S. L. Buchwald,
Chem. Sci., 2011, 2, 27; (b) J. F. Hartwig, Organotransition
Metal Chemistry, University Science Books, Sausalito, 2010,
p. 907; (c) J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534.
5 For selected examples see: (a) F.-R. Alexandre, A. Amador, S. Bot,
C. Caillet, T. Convard, J. Jakubik, C. Musiu, B. Poddesu,
L. Vargiu, M. Liuzzi, A. Roland, M. Seifer, D. Standring,
R. Storer and C. B. Dousson, J. Med. Chem., 2011, 54, 392;
(b) K.-H. Lim, O. Hiraku, K. Komiyama, T. Koyano,
M. Hayashi and T.-S. Kam, J. Nat. Prod., 2007, 70, 1302.
6 Selected reports: (a) L. Ackermann, R. Sandmann and
M. V. Kondrashov, Synlett, 2009, 1219; (b) L. Ackermann,
R. Sandmann, M. Schinkel and M. V. Kondrashov, Tetrahedron,
2009, 65, 8930; (c) L. T. Kaspar and L. Ackermann, Tetrahedron,
2005, 61, 11311; (d) L. Ackermann, Org. Lett., 2005, 7, 439;
(e) L. Ackermann, S. Barfußer and H. K. Potukuchia, Adv. Synth.
Catal., 2009, 351, 1064.
a
0.5 mmol scale, [Pd]/L = 1 : 1, N2H4ꢀH2O = 1.0 mmol, KOtBu =
1.25 mmol, 90 1C in 1,4-dioxane; isolated yield of 4 (40 in parentheses).
b 1H NMR yield of 4 (40) relative to 1,3,5-trimethoxybenzene.
7 (a) A. L. Rodriguez, C. Koradin, W. Dohle and P. Knochel,
Angew. Chem., Int. Ed., 2000, 39, 2488; (b) C. Koradin,
W. Dohle, A. L. Rodriguez, B. Schmid and P. Knochel,
Tetrahedron, 2003, 59, 1571; (c) A. H. Stoll and P. Knochel, Org.
Lett., 2008, 10, 113; (d) R. Sanz, V. Guilarte and M. P. Castroviejo,
Synlett, 2008, 3006.
8 (a) R. J. Lundgren and M. Stradiotto, Angew. Chem., Int. Ed.,
2010, 49, 8686; (b) K. D. Hesp, R. J. Lundgren and M. Stradiotto,
J. Am. Chem. Soc., 2011, 133, 5194.
including additives (CuCl2 or Ag2CO3) were not successful.
A
brief survey of additional substrates proved other
N-aminoindoles could be formed in moderate yields
(36–65%). Given the difficulties associated with the use of
hydrazine as a nitrogen-source in cross-coupling reactions,
we view this transformation as representing a significant
contribution towards the establishment of direct routes to
hydrazine-containing heterocycles.
9 The low yields of 2a were the result of hydrodehalogenation as well
as conversion to other unidentified products. In the course of this
study we found that the presence of the alkyne functionality slowed
catalytic turnover and promoted the reduction of the haloarene
In summary, we have developed a straightforward method
for the synthesis of 2-arylindoles directly from ammonia
through a tandem cross-coupling/alkyne amination sequence.
Additionally, the challenging amine partners methylamine and
hydrazine have been shown to form indole structures using the
same catalyst system. We believe that this protocol represents
an important contribution towards the development of a more
direct and benign synthesis of the ubiquitous indole substructure,
and continued improvements to the described reaction should
engender the process as a viable alternative to more traditional
syntheses of NH-, NMe- and N-aminoindoles.
substrate10
.
10 See the ESIw for additional details.
11 (a) E. Avaro and J. F. Hartwig, J. Am. Chem. Soc., 2009, 131,
7858; (b) Q. Shen and J. F. Hartwig, Org. Lett., 2008, 10, 4109;
(c) M. A. Fernandez-Rodrıguez, Q. Shen and J. F. Hartwig,
Chem.–Eur. J., 2006, 12, 7782; (d) Q. Shen, S. Shekhar,
J. P. Stambuli and J. F. Hartwig, Angew. Chem., Int. Ed., 2005,
44, 1371.
12 Beller and co-workers3e have reported the cross-coupling of a
2-alkynyl substrate to yield the corresponding aniline in modest
yield.
13 For some examples of the use of methylamine in Buchwald–
Hartwig amination, see: (a) B. P. Fors and S. L. Buchwald,
J. Am. Chem. Soc., 2010, 132, 15914; (b) R. J. Lundgren,
A. Sappong-Kumankumah and M. Stradiotto, Chem.–Eur. J.,
2010, 16, 1983; (c) B. P. Fors, D. A. Watson, M. R. Biscoe and
S. L. Buchwald, J. Am. Chem. Soc., 2008, 130, 13552.
14 Disubstituted hydrazines have been employed in tandem
cross-coupling/cyclization reactions to yield either indazoles or
N-aminoindoles, although the substitution pattern of the
hydrazine substrates precludes the formation of indole/indazole
mixtures, see: (a) N. Halland, M. Nazare, O. R’kyek, J. Alonso,
M. Urmann and A. Lindenschmidt, Angew. Chem., Int. Ed., 2009,
48, 6879; (b) N. Halland, M. Nazare, J. Alonso, O. R’kyek and
A. Lindenschmidt, Chem. Commun., 2011, 47, 1042.
Acknowledgment is made to the NSERC of Canada, and
Dalhousie University for their support of this work. Solvias is
acknowledged for the gift of the Josiphos ligand.
Notes and references
1 For recent reviews see: (a) J. L. Klinkenberg and J. F. Hartwig,
Angew. Chem., Int. Ed., 2011, 50, 86; (b) Y. Aubin, C. Fischmeister,
C. M. Thomas and J.-L. Renaud, Chem. Soc. Rev., 2010, 39, 4130;
(c) J. I. van der Vlugt, Chem. Soc. Rev., 2010, 39, 2302.
2 (a) J. E. R. Sadig and M. C. Willis, Synthesis, 2011, 1;
(b) G. R. Humphrey and J. T. Kuethe, Chem. Rev., 2006, 106,
2875; (c) S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105,
2873.
15 For a report concerning Cu-catalyzed cross-coupling/cyclization of
substituted hydrazines to yield either pyrroles or pyrazoles see:
R. Martın, M. Rodrıguez Rivero and S. L. Buchwald, Angew.
Chem., Int. Ed., 2006, 45, 7079.
3 (a) J. L. Klinkenberg and J. F. Hartwig, J. Am. Chem. Soc., 2010,
132, 11830; (b) G. D. Vo and J. F. Hartwig, J. Am. Chem. Soc.,
c
6938 Chem. Commun., 2011, 47, 6936–6938
This journal is The Royal Society of Chemistry 2011