Page 9 of 11
Journal of the American Chemical Society
7. He, Z.; Zajdlik, A.; Yudin, A. K. Air- and Moisture-Stable Milstein, D. Metal Insertion into C−C Bonds in Solution.
1
2
3
4
5
6
7
8
Amphoteric Molecules: Enabling Reagents in Synthesis.
Acc. Chem. Res. 2014. 47, 1029–1040.
Angew. Chem. Int. Ed. 1999, 38, 870–883. (c) Jun, C. H.;
Moon, C. W.; Lee, D. Y. Chelation-Assisted Carbon−Hy-
drogen and Carbon−Carbon Bond Activation by Transi-
tion Metal Catalysts. Chem. Eur. J. 2002, 8, 2422–2428.
(d) Jun, C. Transition Metal-Catalyzed Carbon–Carbon
Bond Activation. Chem. Soc. Rev. 2004, 33, 610–618. (e)
Seiser, T.; Cramer, N. Enantioselective Metal-Catalyzed
Activation of Strained Rings. Org. Biomol. Chem. 2009,
7, 2835–2840. (f) Colby, D. A.; Bergman, R. G.; Ellman, J.
A. Rhodium-Catalyzed C−C Bond Formation via Het-
eroatom-Directed C−H Bond Activation. Chem. Rev.
2010, 110, 624–655.
8. (a) Beak, P.; Zajdel, W. J. Dipole-Stabilized Carbanions:
The α′ Lithiation of Piperidides. J. Am. Chem. Soc. 1984,
106, 1010–1018. (b) Beak, P.; Basu, A.; Gallagher, D. J.;
Park, Y. S.; Thayumanavan, S. Regioselective, Diastere-
oselective, and Enantioselective Lithiation−Substitu-
tion Sequences: Reaction Pathways and Synthetic Ap-
plications. Acc. Chem. Res. 1996, 29, 552–560.
9. (a) Treatment of heteroatom-containing azacycles (e.g.
morpholine) with strong bases results in β-elimination
to give ring-opened products, instead of α-fuctionaliza-
tion. (b) Babudri, F.; Florio, S.; Reho, A.; Trapani, G.
Lithiationꢀα To Heteroatoms: Eliminative Ring Fission
of Heterocycles. J. Chem. Soc. Perkin Trans. 1 1984,
1949–1955.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
16. Aoyama, H.; Hasegawa, T.; Omote, Y. Solid State Photo-
chemistry of N,N-Dialkyl-α-Oxoamides. Type II Reac-
tions in the Crystalline State. J. Am. Chem. Soc. 1979,
101, 5343–5347.
10. (a) Chen, W.; Ma, L.; Paul, A.; Seidel, D. Direct α-C−H
Bond Functionalization of Unprotected Cyclic Amines.
Nat. Chem. 2018, 10, 165–169. (b) Paul, A.; Seidel, D.
α-Functionalization of Cyclic Secondary Amines: Lewis
Acid Promoted Addition of Organometallics to Transi-
ent Imines. J. Am. Chem. Soc. 2019, 141, 8778−8782.
11. (a) Li, C.; Ji, Y.; Cao, Q.; Li, J.; Li, B. Concise and Facile
Synthesis of (R,R)-Dexmethylphenidate Hydrochloride
and Its Three Stereoisomers. Synth. Commun. 2017. 47,
1301–1306. (b) Yadav-Samudrala, B. J.; Eltit, J. M.; Glen-
non, R. A. Synthetic Cathinone Analogues Structurally
Related to the Central Stimulant Methylphenidate as
Dopamine Reuptake Inhibitors. ACS Chem. Neurosci.
2019, 10, 4043–4050.
12. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Fre-
quency of Nitrogen Heterocycles Among U.S. FDA Ap-
proved Pharmaceuticals. J. Med. Chem. 2014, 57,
10257–10274.
13. (a) Sun, H.; Tawa, G.; Wallqvist, A. Classification of Scaf-
fold-Hopping Approaches. Drug Discovery Today. 2012.
(b) Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in
Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246.
(c)
14. For reviews, see (a) Dyker, G. Transition Metal Cata-
lyzed Coupling Reactions under C−H Activation. Angew.
Chem. Int. Ed. 2002, 38, 1698–1712. (b) Bellina, F.;
Rossi, R. Transition Metal-Catalyzed Direct Arylation of
Substrates with Activated sp3 Hybridized C−H Bonds
and Some of Their Synthetic Equivalents with Aryl Hal-
ides and Pseudohalides. Chem. Rev. 2009, 110, 1082–
1146. (c) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreut-
zer, J.; Baudoin, O. Functionalization of Organic Mole-
cules by Transition-Metal-Catalyzed C(sp3)−H Activa-
tion. Chem. Eur. J. 2010, 16, 2654–2672. (d) Baudoin, O.
Transition Metal-Catalyzed Arylation of Unactivated
C(sp3)−H Bonds. Chem. Soc. Rev. 2011, 40, 4902–4911.
(e) Girard, S. A.; Knauber, T.; Li, C. J. The Cross-Dehydro-
genative Coupling of Csp3−H Bonds: A Versatile Strat-
egy for C−C Bond Formations. Angew. Chem. Int. Ed.
2014, 53, 74–100.
17. Roque, J. B.; Kuroda, Y.; Jurczyk, J.; Xu, L.-P.; Ham, J. S.;
Göttemann, L. T.; Roberts, C. A.; Adpressa, D.; Saurí, J.;
Joyce, L. A.; Musaev, D. G.; Yeung, C. S.; Sarpong, R. C–C
Cleavage Approach to C–H Functionalization of Satu-
rated Aza-Cycles. ACS Catal. 2020, 10, 2929–2941.
18. For representative examples of Rh-catalyzed ring
opening of cyclobutanol, see: (a) Seiser, T.; Cramer, N.
Rhodium-Catalyzed C−C Bond Cleavage: Construction
of Acyclic Methyl Substituted Quaternary Stereogenic
Centers. J. Am. Chem. Soc. 2010, 132, 5340–5341. (b)
Ishida, N.; Sawano, S.; Masuda, Y.; Murakami, M. Rho-
dium-Catalyzed Ring Opening of Benzocyclobutenols
with Site-Selectivity Complementary to Thermal Ring
Opening. J. Am. Chem. Soc. 2012, 134, 17502–17504. (c)
Ishida, N.; Nakanishi, Y.; Murakami, M. Reactivity
Change of Cyclobutanols towards Isocyanates: Rho-
dium Favors c-Carbamoylation over o-Carbamoylation.
Angew. Chem. Int. Ed. 2013, 52, 11875–11878.
19. (a) Murphy, S. K.; Park, J.-W.; Cruz, F. A.; Dong, V. M. Rh-
Catalyzed C–C Bond Cleavage by Transfer Hydro-
formylation. Science 2015, 347, 56–60. (b) Dermenci,
A.; Whittaker, R. E.; Gao, Y.; Cruz, F. A.; Yu, Z.-X.; Dong, G.
Rh-Catalyzed Decarbonylation of Conjugated Ynones
via Carbon–Alkyne Bond Activation: Reaction Scope
and Mechanistic Exploration via DFT Calculations.
Chem. Sci. 2015, 6, 3201–3210.
20. See the Supporting Information for more details of a
qualitative comparison of Pd- and Rh- catalyzed C–C
bond cleavage selectivities.
21. Hammond, G. S. A Correlation of Reaction Rates. J. Am.
Chem. Soc. 1955, 77, 334–338.
22. Jáuregui-Haza, U. J.; Pardillo-Fontdevila, E. J.; Wilheim,
A. M.; Delmas, H. Solubility of hydrogen and carbon
monoxide in water and some organic solvent, Lat. Am.
Appl. Res. 2004, 34, 71–74.
23. Alcock, S. G.; Baldwin, J. E.; Bohlmann, R.; Harwood, L.
M.; Seeman, J. I. On the Conjugative Isomerizations of
β,γ-Unsaturated Esters. Stereochemical Generaliza-
tions and Predictions for 1,3-Prototropic Shifts under
Basic Conditions. J. Org. Chem. 1985, 50, 3526–3535.
24. Aoyama, H.; Sakamoto, M.; Kuwabara, K.; Yoshida, K.;
Omote, Y. Photochemical Reactions of α-Oxo Amides.
Norrish Type II Reactions via Zwitterionic Intermedi-
ates. J. Am. Chem. Soc. 1983. 105, 1958–1964.
15. For reviews, see (a) M. Murakami, Y. I. Cleavage of Car-
bon−Carbon Single Bonds by Transition Metals. Top.
Organomet. Chem. 1999, 3, 97–129. (b) Rybtchinski, B.;
ACS Paragon Plus Environment