Remarkable practical progress in catalyzed functionali-
zations of unreactive CÀH bonds was recently accom-
plished by the use of water as an environmentally benign,
nonflammable, and nontoxic reaction medium.7,8 Based
on recent studies directed toward the ruthenium-catalyzed
oxidative annulations of alkynes9 we developed first ruthe-
nium-catalyzed oxidative CÀH bond alkenylations in
water,10 on which we wish to report herein. Specifically,
benzoic acids11 underwent a reaction sequence comprising
an intermolecular oxidative alkenylation and a subsequent
oxa-Michael reaction. Thereby, diversely substituted
phthalides were obtained, which constitute valuable inter-
mediates in organic synthesis and indispensable structural
motifs of bioactive molecules.12 It is noteworthy that
related palladium- or rhodium-catalyzed cascade reactions
have thus far only been realized in organic solvents.13
At the outset of our studies, we probed the effect of
representative oxidants, additives, and solvents on the
ruthenium-catalyzed cross-dehydrogenative alkenylation
Table 1. Optimization of Ruthenium-Catalyzed Oxidative Al-
kenylationsa
entry
oxidant
additive
---
solvent
yield
1
2
3
4
5
6
7
---
H2O
H2O
H2O
H2O
H2O
H2O
H2O
---
PhI(OAc)2
benzoquinone
AgNO3
---
---
---
25%
---
---
AgOAc
---
<5%
---
CuBr2
---
CuBr2
LiOAc
(3.0 equiv)
NaOAc
(3.0 equiv)
---
66%
8
CuBr2
H2O
86%
9
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
Cu(OAc)2
H2O
95%
90%b
28%
34%
---
(8) For recent reviews on transition-metal-catalyzed coupling reac-
tions in or on water, see: (a) Li, C.-J. Handbook Of Green Chemistry:
Reactions In Water; Wiley-VCH: Weinheim, 2010; Vol. 5. (b) Li, C.-J.
Acc. Chem. Res. 2010, 43, 581–590. (c) Lipshutz, B. H.; Abela, A. R.;
Boskovic, Z. V.; Nishikata, T.; Duplais, C.; Krasovskiy, A. Top. Catal.
2010, 53, 985–990. (d) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110,
6302–6337. (e) Herrerias, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. Rev. 2007,
107, 2546À2562 and references cited therein.
10
11
12
13
14
---
H2O
---
MeOH
t-AmOH
m-xylene
H2O
---
---
TEMPO
(20 mol %)
95%
(9) (a) Ackermann, L.; Lygin, A. V.; Hofmann, N. Angew. Chem.,
Int. Ed. 2011, 50, 6379–6382. (b) Ackermann, L.; Lygin, A. V.;
Hofmann, N. Org. Lett. 2011, 13, 3278–3281. (c) For oxidative aryla-
a Reaction conditions: 1a (1.0 mmol), 2a (2.0 mmol), [RuCl2(p-
cymene)]2 (2.0 mol %), oxidant (2.0 equiv), H2O (5.0 mL), 80 °C, 16 h;
isolated yields. b [RuCl2(p-cymene)]2 (1.0 mol %).
ꢀ
tions, see also: Ackermann, L.; Novak, P.; Vicente, R.; Pirovano, V.;
Potukuchi, H. K. Synthesis 2010, 2245–2253.
(10) For ruthenium-catalyzed direct arylations and alkylations in the
presence of water, see: (a) Ackermann, L.; Hofmann, N.; Vicente, R.
Org. Lett. 2011, 13, 1875–1877. (b) Arockiam, P. B.; Fischmeister, C.;
Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2010, 49, 6629–6632.
(c) Ackermann, L. Org. Lett. 2005, 7, 3123–3125.
(11) For a review on CÀH bond functionalizations with benzoic
acids, see: (a) Satoh, T.; Miura, M. Synthesis 2010, 3395–3409. (b) For a
representative recent example of palladium-catalyzed oxidative CÀH
bond functionalizations with acids, see: Wang, D.-H.; Yu, J.-Q. J. Am.
Chem. Soc. 2011, 133, 5767–5769 and references cited therein.
(12) For select reviews, see: (a) Willis, M. C. Angew. Chem., Int. Ed.
2010, 49, 6026–6027. (b) Beck, J. J.; Chou, S.-C. J. Nat. Prod. 2007, 70,
891–900 and references cited therein. Recent examples: (c) Tianpanich,
K.; Prachya, S.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop,
P. J. Nat. Prod. 2011, 74, 79–81. (d) Yoshikawa, K.; Kokudo, N.;
Hashimoto, T.; Yamamoto, K.; Inose, T.; Kimura, T. Biol. Pharm. Bull.
2010, 33, 1355–1359. (e) Ye, Z.; Lv, G.; Wang, W.; Zhang, M.; Cheng, J.
Angew. Chem., Int. Ed. 2010, 49, 3671–3674. (f) Singh, M.; Argade, N. P.
J. Org. Chem. 2010, 75, 3121–3124 and references cited therein.
(13) (a) Satoh, T.; Ueura, K.; Miura, M. Pure Appl. Chem. 2008, 80,
1127–1134. (b) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 1407–
1409. (c) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362–
5367. (d) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M.
J. Org. Chem. 1998, 63, 5211–5215. See also: (e) Mochida, S.; Hirano,
K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024–3033.
of benzoic acid 1a employing olefin 2a (Table 1). Notably,
the desired product 3aa was not formed in the absence of a
sacrificial oxidant (entry 1). Yet, particularly Cu(OAc)2
proved to be effective among various terminal oxidants
(entries 2À10). Interestingly, CuBr2 could be employed as
well, provided that superstoichiometric amounts of an
acetate salt were present (entries 6À8), thus indicating
carboxylate assistance.14,15 Among representative sol-
vents, H2O turned out to be the most suitable (entries
9À13). With respect to the reaction mechanism, it is
notable that TEMPO as an additive did not inhibit the
catalytic activity (entry 14).16
Subsequently, we explored the scope of the ruthe-
nium-catalyzed oxidative phthalide synthesis in water
(Scheme 1). We were delighted to observe that differ-
ently substituted benzoic acids 1 were converted with
high efficacy. For instance, the catalytic system tolerated
valuable electrophilic functional groups, such as fluoro
or bromo substituents. Further, sterically hindered
ortho-substituted acids 1aÀ1h proved to be viable
(14) For examples of carboxylate-assisted ruthenium-catalyzed di-
rect arylations and alkylations, see: (a) Ackermann, L.; Lygin, A. Org.
Lett. 2011, 13, 3332–3335. (b) Ouellet, S. G.; Roy, A.; Molinaro, C.;
Angelaud, R.; Marcoux, J.-F.; O’Shea, P. D.; Davies, I. W. J. Org.
Chem. 2011, 76, 1436–1439. (c) Ackermann, L.; Vicente, R.; Potukuchi,
H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032–5035. (d) Ackermann, L.
Pure Appl. Chem. 2010, 82, 1403–1413. (e) Ackermann, L.; Vicente, R.
Top. Curr. Chem. 2010, 292, 211–229. (f) Pozgan, F.; Dixneuf, P. H. Adv.
Synth. Catal. 2009, 351, 1737–1743. (g) Ackermann, L.; Vicente, R. Org.
Lett. 2009, 11, 4922–4925. (h) Arockiam, P.; Poirier, V.; Fischmeister,
C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2009, 11, 1871–1875.
(15) A review: (a) Ackermann, L. Chem. Rev. 2011, 111, 1315–1345.
For early examples of acetate-assisted stoichiometric cyclometalations,
see: (b) Duff, J. M.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1972, 2219–
2225. (c) Duff, J. M.; Mann, B. E.; Shaw, B. L.; Turtle, B. J. Chem. Soc.,
Dalton Trans. 1974, 139–145. (d) Davies, D. L.; Al-Duaij, O.; Fawcett,
J.; Giardiello, M.; Hilton, S. T.; Russell, D. R. Dalton Trans. 2003, 4132–
4138.
ꢀ
(i) Ackermann, L.; Novak, P. Org. Lett. 2009, 11, 4966–4969.
ꢀ
(j) Ackermann, L.; Novak, P.; Vicente, R.; Hofmann, N. Angew. Chem.,
Int. Ed. 2009, 48, 6045–6048. (k) Ackermann, L.; Mulzer, M. Org. Lett.
2008, 10, 5043–5036. (l) Ackermann, L.; Vicente, R.; Althammer, A.
Org. Lett. 2008, 10, 2299–2302.
(16) Reactions in the presence of 3 wt % of surfactant PTS/H2O
(polyoxyethanyl R-tocopheryl sebacate) did not provide improved yields
in a set of representative transformations.
4154
Org. Lett., Vol. 13, No. 16, 2011