J. R. Bell et al. / Tetrahedron Letters 52 (2011) 3723–3725
3725
Table 2
article can be found, in the online version, at doi:10.1016/
Distribution coefficients of La3+ using ILs for
biphasic extraction
IL
DLa
130
References and notes
[BTBDH][hfac]
[BuG5H][hfac]
[BTBDH][fod]
[BuG5H][fod]
[P2-EtH][fod]
[BTBDH][bta]
[P2-EtH][bta]
[BTBDH][tta]
[P2-EtH][tta]
1. Luo, H. M.; Dai, S. Separation of metal ions based on ionic liquids. In Ionic
Liquids in Chemical Analysis; Koel, M., Ed.; CRC Press: Boca Raton, FL, 2009; pp
269–292.
2. Dai, S.; Shin, Y. S.; Toth, L. M.; Barnes, C. E. Inorg. Chem. 1997, 36, 4900–4902.
3. (a) Dai, S.; Ju, Y. H.; Barnes, C. E. J. Chem. Soc., Dalton Trans. 1999, 1201–1202;
(b) Luo, H. M.; Dai, S.; Bonnesen, P. V.; Haverlock, T. J.; Moyer, B. A.; Buchanan,
A. C. Solvent Extr. Ion Exch. 2006, 24, 19–31; (c) Dietz, M. L.; Dzielawa, J. A. Chem.
Commun. 2001, 2124–2125.
48
3900
2200
>104
4000
7700
>104
>104
4. (a) Shimojo, K.; Kurahashi, K.; Naganawa, H. Dalton Trans. 2008, 5083–5088; (b)
Turanov, A. N.; Karandashev, V. K.; Baulin, V. E. Solvent Extr. Ion Exch. 2010, 28,
367–387.
5. Cocalia, V. A.; Gutowski, K. E.; Rogers, R. D. Coord. Chem. Rev. 2006, 250, 755–
764.
6. Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L. J. Am.
Chem. Soc. 2003, 125, 15466–15473.
7. Chun, S.; Dzyuba, S. V.; Bartsch, R. A. Anal. Chem. 2001, 73, 3737–3741.
8. Davis, H. J. Chem. Lett. 2004, 33, 1072–1077.
9. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Wierzbicki,
A.; Davis, J. H.; Rogers, R. D. Chem. Commun. 2001, 135–136.
10. Harjani, J. R.; Friscic, T.; MacGillivray, L. R.; Singer, R. D. Dalton Trans. 2008,
4595–4601.
11. (a) Rout, A.; Venkatesan, K. A.; Srinivasan, T. G.; Rao, P. R. V. Radiochim. Acta
2010, 98, 459–466; (b) Ouadi, A.; Klimchuk, O.; Gaillard, C.; Billard, I. Green
Chem. 2007, 9, 1160–1162.
12. Holbrey, J. D.; Visser, A. E.; Spear, S. K.; Reichert, W. M.; Swatloski, R. P.; Broker,
G. A.; Rogers, R. D. Green Chem. 2003, 5, 129–135.
13. (a) Luo, H. M.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C. J. Alloy. Compd. 2006, 418,
195–199; (b) Liu, H.; Wang, H.; Tao, G.; Kou, Y. Chem. Lett. 2005, 34, 1184–
1185.
14. Oadi, A.; Gadenna, B.; Hesemann, P.; Moreau, J. J. E.; Billard, I.; Gaillard, C.;
Mekki, S.; Moutiers, G. Chem. Eur. J. 2006, 12, 3074–3081.
15. (a) Stojanovic, A.; Kogelnig, D.; Fischer, L.; Hann, S.; Galanski, M.; Groessl, M.;
Krachler, R.; Keppler, B. Aust. J. Chem. 2010, 63, 511–524; (b) Egorov, V. M.;
Djigailo, D. I.; Momotenko, D. S.; Chernyshov, D. V.; Torochesnikova, I. I.;
Smirnova, S. V.; Pletnev, I. V. Talanta 2010, 80, 1177–1182.
16. Mehdi, H.; Binnemans, K.; Van Hecke, K.; Van Meervelt, L.; Nockemann, P.
Chem. Commun. 2010, 46, 234–236.
ILs, the residual aqueous lanthanide concentration was below the
limits of detection of the instrument, which yields a distribution
coefficient (DM) of >104. Extraction efficiency was seen to increase
for larger and more hydrophobic anions, such as [fod] and [tta],
which is consistent with our previous research on anion effects.3b
Large hydrophobic cations, such as [P2-EtH] and [BTBDH] also gave
better extraction efficiencies. Note that this is in contrast to the
cation exchange mechanism reported by Dietz,3c in which a
conventional IL with a neutral extractant was used, and it was
observed that distribution coefficients decreased with increased
cation hydrophobicity. The extraction mechanism for this system
has yet to be determined, and is the subject of current studies.
In conclusion, we have shown that task-specific protic ionic liq-
uids can be easily synthesized in one step from commercially avail-
able organic superbases and fluorinated b-diketones. These ionic
liquids are hydrophobic, have a wide liquid temperature range,
have a thermal stability comparable to aprotic ionic liquids, and
are able to extract lanthanide cations from aqueous solutions with
high efficiency.
17. Batzar, K.; Goldberg, D. E.; Newman, L. J. J. Inorg. Nucl. Chem. 1967, 29, 1511–
1518.
18. Luo, H. M.; Baker, G. A.; Lee, J. S.; Pagni, R. M.; Dai, S. J. Phys. Chem. B 2009, 113,
4181–4183.
Acknowledgments
This research was supported by the Basic Energy Science Pro-
gram and Office of Nuclear Physics, Office of Science, U.S. Depart-
ment of Energy, under Contract DE-AC05-0096OR22725 with Oak
Ridge National Laboratory, managed by UT-Battelle, LLC. J.R.B.
acknowledges Oak Ridge Associated Universities (ORAU) for post-
doctoral fellowship.
19. Greaves, T. L.; Drummond, C. J. Chem. Rev. 2008, 108, 206–237.
20. (a) Gupta, O. D.; Twamley, B.; Shreeve, J. M. Tetrahedron Lett. 2004, 45, 1733–
1736; (b) Gupta, O. D.; Twamley, B.; Shreeve, J. M. J. Fluorine Chem. 2005, 126,
1222–1229; (c) Li, X.; Zeng, Z.; Garg, S.; Twamley, B.; Shreeve, J. M. Eur. J. Inorg.
Chem. 2008, 3353–3358.
21. (a) Kaljurand, I.; Koppel, I. A.; Kutt, A.; Room, E. I.; Rodima, T.; Koppel, I.;
Mishima, M.; Leito, I. J. Phys. Chem. A 2007, 111, 1245–1250; (b) Kolomeitsev, A.
A.; Koppel, I. A.; Rodima, T.; Barten, J.; Lork, E.; Roschenthaler, G. V.; Kaljurand,
I.; Kutt, A.; Koppel, I.; Maemets, V.; Leito, I. J. Am. Chem. Soc. 2005, 127, 17656–
17666.
Supplementary data
22. Yoshizawa, M.; Xu, W.; Angell, C. A. J. Am. Chem. Soc. 2003, 125, 15411–15419.
23. Li, B.; Zhang, R.; Xiao, B. L. Macromolecules 2007, 40, 2303–2307.
24. (a) Xie, H.; Zhang, S.; Duan, H. Tetrahedron Lett. 2004, 45, 2013–2015; (b) Isobe,
T.; Ishikawa, T. J. Org. Chem. 1999, 64, 6984–6988.
Supplementary data (experimental procedures for the synthesis
of BTBD, BuG5, ILs, as well as 1H NMR data) associated with this