The Journal of Organic Chemistry
NOTE
(1.22 g) in 34% yield: mp 97 °C; 1H NMR (400 MHz, CDCl3) δ 7.82
(2H, d, J = 8.0 Hz), 7.33 (2H, d, J = 7.9 Hz), 7.11ꢀ6.58 (8H, m), 4.57
(1H, s), 4.35ꢀ2.94 (22H, m), 2.45 (3H, s), 1.29ꢀ0.83 (36H, m); 13C
NMR (100 MHz, CDCl3) δ 156.0, 154.0, 153.6, 153.2, 152.8, 146.3,
145.6, 145.1, 144.8, 135.2, 134.8, 133.5, 133.3, 132.5, 129.9, 128.2, 125.6,
125.0, 76.2, 70.1, 68.5, 62.4, 58.9, 38.9, 37.6, 34.2, 34.1, 33.8, 31.7, 31.3,
31.0, 30.8, 21.8; MS (MALDI-TOF) m/z 941.7 [M + Na+]. Anal. Calcd
for C57H74O8S: C, 74.47; H, 8.11; S, 3.49. Found: C, 74.32; H,
8.39; S, 3.32.
’ REFERENCES
(1) (a) Yamada, J., Sugimoto, T., Eds. TTF Chemistry. Fundamentals
and Applications of Tetrathiafulvalene; Springer Verlag: Heidelberg,
2004. (b) Bryce, M. R. Adv. Mater. 1999, 11, 11–23. (c) Shibaeva,
R. P.; Yagubskii, E. B. Chem. Rev. 2004, 104, 5347–5378.
(2) (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly,
K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000,
289, 1172–1175. (b) Klajn, R.; Stoddart, J. F.; Grzybowski, B. A. Chem.
Soc. Rev. 2010, 39, 2203–2237. (c) Wang, C.; Olson, M. A.; Fang, L.;
Benítez, D.; Tkatchouk, E.; Basu, S.; Basuray, A. N.; Zhang, D.; Zhu, D.;
Goddard, W. A.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2010,
107, 13991–13996.
(3) (a) Canevet, D.; Sallꢀe, M.; Zhang, G.; Zhang, D.; Zhu, D. Chem.
Commun. 2009, 2245–2269. (b) Wang, C.; Chen, Q.; Sun, F.; Zhang, D.;
Zhang, G.; Huang, Y.; Zhao, R.; Zhu, D. J. Am. Chem. Soc. 2010,
132, 3092–3096. (c) Feng, Y.; Zhang, Q.; Tan, W.; Zhang, D.; Tu, Y.;
Agren, H.; Tian, H. Chem. Phys. Lett. 2008, 455, 256–260.
(4) (a) Lyskawa, J.; Le Derf, F.; Levillain, E.; Mazari, M.; Sallꢀe, M.;
Dubois, L.; Viel, P.; Bureau, C.; Palacin, S. J. Am. Chem. Soc. 2004,
126, 12194–12195. (b) Zhao, B.-T.; Blesa, M.-J.; Mercier, N.; Le Derf,
F.; Sallꢀe, M. J. Org. Chem. 2005, 70, 6254–6257. (c) Liao, J.; Agustsson,
J. S.; Wu, S.; Sch€onenberger, C.; Calame, M.; Leroux, Y.; Mayor, M.;
Jeannin, O.; Ran, Y.-F.; Liu, S.-X.; Decurtins, S. Nano Lett. 2010,
10, 759–764.
Synthesis of Compound 12. To a degassed solution (20 mL) of
8 (0.4 g, 1.06 mmol) in THF was added a degassed solution (8.0 mL) of
CsOH H2O (0.2 g, 1.2 mmol) in CH3OH over a period of 5.0 min
3
under nitrogen atmosphere. The mixture was stirred for an additional
30 min, and then a degassed solution (10 mL) of 11 (0.75 g, 0.8 mmol)
in THF was added in one time. The reaction mixture was stirred
overnight at room temperature. Then, the solvents were evaporated
under reduced pressure, and the residue was subjected to column
chromatography with CH2Cl2 as eluent. Compound 12 was obtained
1
as an orange powder (0.60 g) in 70% yield: mp 139 °C; H NMR
(400 MHz, CDCl3) δ 7.19ꢀ6.57 (8H, m), 6.30ꢀ6.25 (1H, m),
4.44ꢀ2.95 (26H, m), 1.34ꢀ0.87 (36H, m); 13C NMR (100 MHz,
CDCl3) δ 156.0, 154.0, 153.7, 153.3, 152.8, 146.2, 145.7, 145.1, 135.3,
135.0, 133.2, 132.4, 126.9, 126.5, 126.1, 125.6, 125.0, 114.1, 71.9, 62.9,
62.6, 61.8, 59.0, 39.2, 37.8, 34.2, 33.8, 31.7, 31.3, 30.8, 30.3; MS
(MALDI-TOF) m/z 1072.4. Anal. Calcd for C58H72O5S7: C, 64.88;
H, 6.76; S, 20.91. Found: C, 64.94; H, 6.90; S, 20.65.
(5) Bigot, J.; Charleux, B.; Cooke, G.; Delattre, F.; Fournier, D.;
Lyskawa, J.; Sambe, L.; Stoffelbach, F.; Woisel, P. J. Am. Chem. Soc. 2010,
132, 10796–10801.
Synthesis of Compound 2. An anhydrous solution (30 mL) of 12
(0.28 g, 0.26 mmol) in THF was cooled to 0 °C with an ice bath. Then,
NaH (0.1 g, 4.2 mmol) was added to the solution in one portion under
nitrogen atmosphere. The mixture was stirred for 30 min, followed by the
addition of p-chloranil (0.13 g, 0.52 mmol). The reaction mixture was
stirred overnight. Then, the solvents were evaporated under reduced
pressure, and the residue was subjected to column chromatography with
CH2Cl2/petroleum ether (60ꢀ90 °C) (v/v, 1/3) as eluent. Compound
2 was obtained as a brown powder (0.17 g) in 51% yield: mp 123 °C; 1H
NMR (400 MHz, CDCl3) δ 7.34ꢀ7.17 (1H, m), 7.15ꢀ6.83 (4H, m),
6.82ꢀ6.40 (3H, m), 5.00ꢀ4.52 (2H, m), 4.50ꢀ4.10 (4H, m), 4.08ꢀ3.90
(4H, m), 3.88ꢀ3.50 (4H, m), 3.45ꢀ3.25 (6H, m), 3.25ꢀ3.08 (4H, m),
3.05ꢀ2.90 (2H, m), 1.50ꢀ1.36 (5H, m), 1.35ꢀ1.20 (14H, s), 1.20ꢀ1.03
(10H, s), 0.98ꢀ0.82 (7H, s); 13C NMR (100 MHz, CDCl3) δ 172.7,
171.7, 167.8, 155.9, 155.4, 154.3, 153.4, 152.8, 145.3, 144.9, 144.8, 143.7,
140.5, 138.7, 135.2, 133.4, 133.1, 132.6, 131.9, 131.9, 131.0, 128.9, 127.4,
126.2, 125.3, 124.7, 122.8, 74.2, 65.7, 61.0, 60.4, 58.1, 38.0, 34.2, 33.8,
31.7, 31.4, 30.7, 30.2, 29.8; MS (MALDI-TOF) m/z 1282.6; HR-MS
(ESI) calcd for C64H71Cl3O7S7 (m/z) 1280.23048, found 1280.22929.
(6) (a) Pꢀerez, E. M.; Sierra, M.; Sꢀanchez, L.; Torres, M. R.; Viruela,
R.; Viruela, P. M.; Ortí, E.; Martín, N. Angew. Chem., Int. Ed. 2007,
46, 1847–1851. (b) Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001,
40, 1372–1409.
(7) (a) Park, J. S.; Karnas, E.; Ohkubo, K.; Chen, P.; Kadish, K. M.;
Fukuzumi, S.; Bielawski, C. W.; Hudnall, T. W.; Lynch, V. M.; Sessler,
J. L. Science 2010, 329, 1324–1327. (b) Jia, H.-P.; Liu, S.-X.; Sanguinet,
L.; Levillain, E.; Decurtins, S. J. Org. Chem. 2009, 74, 5727–5729.
(c) Leroy-Lhez, S.; Baffreau, J.; Perrin, L.; Levillain, E.; Allain, M.
Blesa, M.-J.; Hudhomme, P. J. Org. Chem. 2005, 70, 6313–6320.
(d) Tsiperman, E.; Becker, J. Y.; Khodorkovsky, V.; Shames, A.; Shapiro,
L. Angew. Chem., Int. Ed. 2005, 44, 4015–4018. (e) Farren, C.;
Christensen, C. A.; FitzGerald, S.; Bryce, M. R.; Beeby, A. J. Org. Chem.
2002, 67, 9130–9139.
(8) (a) Wu, H.; Zhang, D.; Su, L.; Ohkubo, K.; Zhang, C.; Yin, S.;
Mao, L.; Shuai, Z.; Fukuzumi, S.; Zhu, D. J. Am. Chem. Soc. 2007,
129, 6839–6846. (b) Wu, H.; Zhang, D.; Zhang, G.; Zhu, D. J. Org.
Chem. 2008, 73, 4271–4274. (c) Zeng, Y.; Zhang, G.; Zhang, D.; Zhu, D.
J. Org. Chem. 2009, 74, 4375–4378. (d) Jia, L.; Zhang, G.; Zhang, D.;
Xiang, J.; Xu, W.; Zhu, D. Chem. Commun. 2011, 47, 322–324.
(9) (a) Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; Abu
El-Fadl, A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1990, 112, 6979–6985.
(b) Blesa, M.-J.; Zhao, B.-T.; Allain, M.; Le Derf, F.; Sallꢀe, M. Chem.—
Eur. J. 2006, 12, 1906–1914. (c) Ogata, M.; Fujimoto, K.; Shinkai, S.
J. Am. Chem. Soc. 1994, 116, 4505–4506. (d) Webber, P. R. A.; Cowley,
A.; Drew, M. G. B.; Beer, P. D. Chem.—Eur. J. 2003, 9, 2439–2446.
(10) Schmidtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609–1646.
(11) (a) Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713–1734.
(b) Scheerder, J.; van Duynhoven, J. P. M.; Engbersen, J. F. J.;
Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1996, 35, 1090–1093.
(12) (a) Cao, Y.-D.; Luo, J.; Zheng, Q.-Y.; Chen, C.-F.; Wang, M.-X.;
Huang, Z.-T. J. Org. Chem. 2004, 69, 206–208. (b) Miao, R.; Zheng,
Q.-Y.; Chen, C.-F.; Huang, Z.-T. J. Org. Chem. 2005, 70, 7662–7671.
(13) Kim, J. S.; Quang, D. T. Chem. Rev. 2007, 107, 3780–3799.
(14) (a) Jaime, C.; De Mendoza, J.; Prados, P.; Nieto, P. M.;
Sanchez, C. J. Org. Chem. 1991, 56, 3372–3376. (b) Iwamoto, K.; Araki,
K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955–4962.
’ ASSOCIATED CONTENT
Supporting Information. 1H NMR and 13C NMR spec-
S
b
tra of compounds 1, 2, 5, 6, 7, 9, 11, and 12; absorption, ESR
spectra, cyclic voltammograms, and 1H NMR spectra of 1, 2, 9,
and 12 in the presence of metal ions. This material is available
’ AUTHOR INFORMATION
Corresponding Authors
*E-mail: dqzhang@iccas.ac.cn and gxzhang@iccas.ac.cn.
’ ACKNOWLEDGMENT
The present research was financially supported by NSFC,
TRR61, Chinese Academy of Sciences, and State Key Basic
Research Program. The authors also thank the anonymous
reviewers for their critical comments and suggestions.
(15) Previous studies (see ref 8) indicate that Sc3+ can induce the
positive shift of the reduction potentials of quinones and trigger the
intramolecular electron transfer within TTFꢀquinone dyads. For this
6887
dx.doi.org/10.1021/jo200985y |J. Org. Chem. 2011, 76, 6883–6888