5938
H. Zilaout et al. / Tetrahedron Letters 52 (2011) 5934–5939
14. Chapman, C. J.; Matsuno, A.; Frost, C. G.; Willis, M. C. Chem. Commun. 2007,
3903–3905.
15. General procedure for the Rh-catalyzed 1,4-conjugate addition according to
procedure A (Scheme 2): A dried 25 ml, three-necked reaction vessel was
charged with degassed [1,4-dioxane/water,15 ml, 10:1 (v/v)] followed by the
needs to be explored in more detail, this straightforward method
should allow fast access to the 2-arylethanesulfonamide chemo-
type. Despite their relatively simple chemical structures, all the re-
ported 2-arylethanesulfonamides in Table 1, except for 52 are, to
the best of our knowledge, novel compounds. Unfortunately, we
are in the future unable to optimize or extend the scope of this
methodology due to the cessation of the research activities at our
site.
addition of
1 (121 mg, 1 mmol) and 3-chlorophenylboronic acid (624 mg,
4 mmol). After addition of Rh(acac)(C2H4)2 (6 mol %, 17 mg, 0.06 mol) and rac-
BINAP (6.6 mol %, 41 mg, 0.066 mol), the stirred mixture was heated in a pre-
heated oil bath at 100 °C for 18 h. After cooling to room temperature, the
resulting mixture was diluted with EtOAc (10 ml) and extracted with 5%
aqueous NaHCO3 solution (10 ml). The organic layer was dried over Na2SO4
and concentrated in vacuo. The crude obtained material was further purified
by flash chromatography [silica gel 60 (0.040–0.063 nm, Merck)], eluent Et2O –
petroleum ether (40–60), 3:1 (v/v) or CH2Cl2 – EtOAc, 9:1 (v/v), to give 150 mg
Acknowledgments
of pure
2 (65%). Spectral data for the compounds described in Table 1,
according to procedure A (Scheme 2): 2: 1H NMR (400 MHz, CDCl3): d 2.76 (d,
J = 8 Hz, 3H), 3.07–3.12 (m, 2H), 3.25–3.30 (m, 2H), 4.18 (br d, J = 4 Hz, 1H),
7.12 (br d, J = 4 Hz, 1H), 7.24 (t, J = 8 Hz, 3H). 13C NMR (100 MHz, CDCl3): d
29.34, 29.57, 52.19, 126.61, 127.25, 128.49, 130.18, 134.64, 139.89. HRMS
(ES+): calcd for C9H12NClO2S (M)+: 233.0277; found: 233.0253. 3: 1H NMR
(400 MHz, CDCl3): d 2.75 (d, J = 8 Hz, 3H), 3.14–3.20 (m, 2H), 3.30–3.36 (m, 2H),
3.93–3.99 (m, 1H), 7.29–7.38 (m, 3H), 7.44 (t, J = 8 Hz, 2H), 7.55–7.60 (m, 4H).
13C NMR (100 MHz, CDCl3): d 29.40, 29.61, 52.35, 127.01, 127.43, 127.62,
128.82, 128.85, 136.89, 140.05, 140.51. HRMS (ES+): calcd for C15H17NO2S (M)+:
275.0980; found: 275.1068. 4: 1H NMR (400 MHz, CDCl3): d 2.72 (d, J = 8 Hz,
3H), 3.27–3.31 (m, 2H), 3.38–3.40 (m, 2H), 3.92 (br d, J = 4 Hz, 1H), 7.35 (dd,
J = 4 and 2 Hz, 1H), 7.46–7.50 (m, 2H), 7.69 (s, 1H), 7.78–7.84 (m, 3H). 13C NMR
The authors wish to thank Hugo Morren for his analytical sup-
port, Marjolein Gaillard-Bosch for performing literature surveys
and Professor Dr. A. J. Minnaard (Stratingh Institute for Chemistry,
University of Groningen) for stimulating discussions. Finally, the
authors are grateful to Professors Dr. H. Hiemstra and Dr. J. H.
van Maarseveen (Biomolecular Synthesis Group Van ’t Hoff Insti-
tute for Molecular Science, University of Amsterdam) for allowing
us the opportunity to publish this manuscript.
(100 MHz, CDCl3):
127.57, 127.77, 128.73, 132.35, 133.52, 135.27. HRMS (ES+): calcd for
13H15NO2S (M)+: 249.0824; found: 249.0898.
d 29.39, 30.14, 52.26, 125.91, 126.40, 126.52, 126.87,
References and notes
C
1. (a) Bylund, J.; Ek, M. E.; Gravenfors, Y.; Holenz, J.; Minidis, A.; Nordvall, G.;
Sohn, D.; Vallin, K. S. A.; Viklund, J.; Von Berg, S. U.S. 0163582 A1. Chem.Abstr.
2006, 1066306; (b) IIIig, C. R.; Ballentine, S. K.; Chen, J.; DesJarlais, R. L.;
Meegalla, S. K.; Wall, M.; Wilson, K. U.S. 0249649 A1. Chem.Abstr. 2007,
1212638; (c) Claiborne, C. F.; Butcher, J. W.; Claremon, D. A.; Libby, B. E.;
Liverton, N. J.; Munson, P. M.; Nguyen, K. T.; Phillips, B.; Thompson, W.;
McCauley, J. A. U.S. 0165241 A1. Chem.Abstr. 2002, 676010.
2. Zinczuk, J.; Sorokin, I. H.; Orazi, O. O.; Corral, R. A. J. Heterocycl. Chem. 1992, 29,
859–866.
3. Castang, S.; Cantegrel, B.; Deshayes, C.; Dolnazon, R.; Gouet, P.; Hasre, R.;
Reverchon, S.; Nasser, W.; Hugouvieux-Cotte-Pattat, N.; Doutheau, A. Bioorg.
Med. Lett. 2004, 14, 5145–5150.
4. St-Denis, Y.; Levesque, S.; Bachand, B.; Jeremy, L.; Leblond, L.; Preville, P.;
Tarazi, M.; Winocour, P. D.; Siddiqui, M. A. Bioorg. Med. Chem. Lett. 2002, 12,
1181–1184.
5. Zhong, Z.; Bibbs, J. A.; Yuan, W.; Wong, C. J. Am. Chem. Soc. 1991, 113, 2259–
2263.
6. Thorsett, E. D.; Semko, C. M.; Pleiss, M.; Lombardo, L. J.; Konradi, A. W.; Grant, F.
S.; Dressen, D. B.; Dappen, M. S., U.S. 6362341 B1. Chem.Abstr. 1999, 113711.
7. Ahern, T. P.; Haley, M. F.; Langler, R. F.; Trenholm, J. E. Can. J. Chem. 1984, 62,
610–614.
16. For a general review, see: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41,
4176–4211.
17. Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2010, 49, 8938–8941.
18. General procedure for the Rh-catalyzed 1,4-conjugate addition according to
procedure B, (Scheme 2): A dried 25 ml, screw-sealed tube was charged with
degassed [1,4 dioxane/water, 3 ml, 99:1 (v/v)], followed by the addition of 6
(140 mg, 1 mmol) and 3-chlorophenylboronic acid (624 mg, 4 mmol). After
addition of [RhOH(cod)]2 (2 mol %, 9.1 mg, 0.02 mol) and rac-BINAP (6 mol %,
37 mg, 0.06 mol), the tube was closed. After removing air by vacuum the tube
was back-filled with nitrogen and heated in a pre-heated oil bath at 120 °C for
18 h. After cooling to room temperature, the resulting mixture was diluted
with EtOAc (5 ml) and extracted with 5% aqueous NaHCO3 solution (5 ml). The
organic layer was dried over Na2SO4 and concentrated in vacuo. The crude
obtained 7 was further purified by flash chromatography [silica gel 60 (0.040–
0.063 nm, Merck)] eluent, Et2O-petroleum ether (40–60), 3:1 (v/v) or CH2Cl2
–
EtOAc,, 95:5 (v/v), to give 158 mg of pure 7 (64%). Spectral data are given for
the compounds described in Table 1, according to procedure B, (Scheme 2): 7:
1H NMR (400 MHz, CDCl3): d 2.88 (s, 6H), 3.08–3.17 (m, 4H), 7.09–7.13 (m, 1H),
7.24 (br t, J = 8 Hz, 3H). 13C NMR (100 MHz, CDCl3): d 29.00, 37.45, 49.27,
126.62, 127.18, 128.52, 130.14, 134.59, 140.13. HRMS (ES+): calcd for
C
10H14ClNO2S (M)+: 247.0248; found: 247.0317. 8: 1H NMR (400 MHz,
8. (a) Van den Hoogenband, A.; Lange, J. H. M.; Bronger, P. J.; Stoit, A. R.; Terpstra,
J. W. Tetrahedron Lett. 2010, 51, 6877–6881; (b) Van den Hoogenband, A.; Den
Hartog, J. A. J.; Faber-Hillhorst, N.; Lange, J. H. M.; Terpstra, J. W. Tetrahedron
Lett. 2009, 50, 5040–5043; (c) Van den Hoogenband, A.; Lange, J. H. M.;
Terpstra, J. W.; Koch, M.; Visser, G. M.; Visser, M.; Korstanje, T. J.; Jastrzebski, J.
T. B. H. Tetrahedron Lett. 2008, 49, 4122–4124; (d) Van den Hoogenband, A.;
Lange, J. H. M.; Den Hartog, J. A. J.; Henzen, R.; Terpstra, J. W. Tetrahedron Lett.
2007, 48, 4461–4465; (e) Van den Hoogenband, A.; Lange, J. H. M.; Iwema-
Bakker, W. I.; Den Hartog, J. A. J.; Van Schaik, J.; Feenstra, R. W.; Terpstra, J. W.
Tetrahedron Lett. 2006, 47, 4361–4364; (f) Kuil, M.; Bekedam, E. K.; Visser, G.
M.; Van den Hoogenband, A.; Terpstra, J. W.; Kamer, P. C. J.; Van Leeuwen, P. W.
N. M.; Strijdonck, G. P. F. Tetrahedron Lett. 2005, 46, 2405–2409; (g) Berkheij,
M.; Van der Sluis, L.; Sewing, C.; Den Boer, D. J.; Terpstra, J. W.; Hiemstra, H.;
Iwema-Bakker, W. I.; Van den Hoogenband, A.; Van Maarseveen, J. H.
Tetrahedron Lett. 2005, 46, 2369–2377; (h) Van den Hoogenband, A.; Den
Hartog, J. A. J.; Lange, J. H. M.; Terpstra, J. W. Tetrahedron Lett. 2004, 45, 8535–
8537; (i) Van Berkel, S. S.; Van den Hoogenband, A.; Terpstra, J. W.; Tromp, M.;
Van Leeuwen, P. W. N. M.; Strijdonck, G. P. F. Tetrahedron Lett. 2004, 45, 7659–
7662; (l) Lange, J. H. M.; Hofmeyer, L. J. F.; Hout, F. A. S.; Osnabrug, S. J. M.;
Verveer, P. C.; Kruse, C. G.; Feenstra, R. W. Tetrahedron Lett. 2002, 43, 1101–
1104.
9. For selected literature references, see: (a) Edwards, H. J.; Hargrave, J. D.;
Penrose, S. D.; Frost, C. G. Chem. Soc. Rev. 2010, 39, 2093–2105; (b) Teichert, J.
F.; Feringa, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486–2528; (c) Evans, P. A.
Modern Rhodium-Catalyzed Organic Reactions; Wiley-VCH: Weinheim,
Germany, 2005; (d) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829–
2844; (e) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196; (f) Hayashi, T.
Synlett 2001, 879–887.
10. Sakai, M.; Hayashi, T.; Miyaura, N. Organometallics 1997, 16, 4229–4231.
11. Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am. Chem. Soc.
1998, 120, 5579–5580.
CDCl3): d 2.88 (s, 6H), 3.10–3.20 (m, 4H), 7.22 (br d, J = 8 Hz, 2H), 7.26 (br t,
J = 4 Hz, 1H), 7.33 (br t, J = 8 Hz, 2H). 13C NMR (100 MHz, CDCl3): d 29.31, 37.47,
49.65, 126.95, 128.37, 128.87, 138.16. HRMS (ES+): calcd for C10H15NO2S (M)+:
213.0667; found: 213.0708. 9: 1H NMR (400 MHz, CDCl3): d 2.89 (s, 6H), 3.23–
3.32 (m, 4H), 7.34 (dd, J = 8 and 2 Hz, 1H), 7.44–7.50 (m, 2H), 7.67 (s, 1H), 7.78–
7.84 (m, 3H). 13C NMR (100 MHz, CDCl3): d 29.49, 37.49, 49.60, 125.84, 126.40,
126.55, 126.84, 127.49, 127.70, 128.62, 132.33, 133.56, 135.57. HRMS (ES+):
calcd for C14H17NO2S (M)+: 263.0980; found: 263.0929. 10: 1H NMR (400 MHz,
CDCl3): d 2.89 (s, 6H), 3.16–3.21 (m, 4H), 7.30 (br d, J = 8 Hz, 2H), 7.35 (br t,
J = 8 Hz, 1H), 7.44 (br t, J = 8 Hz, 2H), 7.56 (br t, J = 8 Hz, 4H). 13C NMR
(100 MHz, CDCl3):
d 28.95, 37.49, 49.57, 127.02, 127.37, 127.57, 128.82,
128.85, 137.19, 139.95, 140.62. HRMS (ES+): calcd for C16H19NO2S (M)+:
289.1137; found: 289.1155. 12: 1H NMR (400 MHz, CDCl3): d 1.55–1.70 (m,
6H), 3.23–3.33 (m, 6H), 3.53–3.58 (m, 2H), 7.44–7.53 (m, 3H), 7.62 (d, J = 4 Hz,
2H), 7.80 (d, J = 4 Hz, 2H), 7.98 (d, J = 4 Hz, 2H). 13C NMR (100 MHz, CDCl3): d
23.62, 25.59, 42.34, 46.74, 50.43, 127.46, 128.29, 128.58, 128.93, 129.19,
136.73, 139.10, 147.55. HRMS (ES+): calcd for C19H23NO2S (M)+: 329.4647;
found 329.4532. 13: 1H NMR (400 MHz, CDCl3): d 1.43–1.51 (m, 4H), 1.56–1.64
(m, 4H), 3.06 (s, 2H), 3.11 (t, J = 8 Hz, 2H), 3.18 (t, J = 8 Hz, 2H), 7.16 (t, J = 8 Hz,
2H), 7.26 (t, J = 8 Hz, 1H), 7.32–7.44 (m, 2H). 13C NMR (100 MHz, CDCl3): d
22.76, 24.64, 28.33, 45.58, 49.62, 127.35, 128.60, 129.78, 137.23. HRMS (ES+):
calcd for C13H19NO2S (M)+: 253.1137; found: 253.1068. 15: 1H NMR (400 MHz,
CDCl3): d 1.51–1.68 (m, 6H), 3.18–3.31 (m, 8H), 7.32 (br d, J = 8 Hz, 1H), 7.44–
7,48 (m, 2H), 7.65 (s, 1H), 7.77–7.82 (m, 3H). 13C NMR (100 MHz, CDCl3): d
23.95, 25.91, 29.59, 46.85, 50.75, 128.90, 126.42, 126.60, 126.98, 127.58,
127.95, 128.88, 132.38, 133.40, 135.65. HRMS (ES+): calcd for C17H21NO2S (M)+:
303.1293; found: 303.1262. 16: 1H NMR (400 MHz, CDCl3): d 3.08–3.11 (m,
2H), 3.32–3.37 (m, 2H), 6.41 (br s, 1H), 7.02–7.05 (m, 1H), 7.09–7.23 (m, 6H),
7.31–7.37 (m, 2H). 13C NMR (100 MHz, CDCl3): d 29.50, 52.31, 120.55, 125.48,
126.68, 127.35, 128.59, 129.76, 130.19, 134.70, 136.33, 139.41. HRMS (ES+):
calcd for
C
14H14ClNO2S (M)+: 295.0434; found: 295.0182. 17: 1H NMR
12. Brock, S.; Hosw, D. R. J.; Moseley, J. D.; Parker, A. J.; Patel, I.; Williams, A. J. Org.
Process Res. Dev. 2008, 12, 496–502.
13. Sathe, D. G.; Bhise, N. B.; Patnekar, S. S.; Deodore, R. B. WO2009/118753 A2.
Chem.Abstr. 2009, 1194187.
(400 MHz, CDCl3): d 3.16–3.21 (m, 2H), 3.37–3.42 (m, 2H), 6.16 (br s, 1H),
7.07 (d, J = 8 Hz, 2H), 7.14–7.25 (m, 3H), 7.28–7.38 (m, 3H), 7.44 (t, J = 8 Hz,
2H), 7.51–7.57 (m, 4H). 13C NMR (100 MHz, CDCl3): d 29.58, 52.57, 120.51,