was assessed by 1H NMR spectroscopy by the disappearance of t-
butyl protons at 1.48–1.49 ppm (Boc) and 1.41 ppm (t-butyl ester)
for 17, and 1.48 ppm (Boc) and 1.42 ppm (t-butyl ester) for 18.
Conclusions
In conclusion, we have developed a programmable “build–
couple” method for the synthesis of heterofunctionalized poly-
valent molecules. This approach was used to prepare a diverse
heterofunctionalized dendron and dendrimer. We demonstrated
the effectiveness of pairing the Huisgen–Sharpless 1,3-dipolar
cycloaddition and Sonogashira coupling reaction with pre-
programmed modular components to synthesize these complex
molecules. While the functional groups we chose to utilize herein
are inspired by amino acid side chains, the functional group
tolerance demonstrated by these coupling reactions15 likely makes
this approach well suited for the synthesis functional group diverse
heterofunctionalized polyvalent molecules.
Scheme 3 Synthesis of di- and tri-podal cores 15 and 16.
Notes and references
1 M. Mamman, S.-K. Choi and G. M. Whitesides, Angew. Chem., Int.
Ed., 1998, 37, 2754.
2 J. P. Overington, B. Al-Lazikani and A. L. Hopkins, Nat. Rev. Drug
Discovery, 2006, 5, 993.
3 (a) E. Gabellieri, G. B. Strambini, D. Shcharbin, B. Klajnert and M.
Bryszewska, Biochem. Biophys. Acta, 2006, 1764, 1750; (b) E. K. Woller,
E. D. Walter, J. R. Morgan, D. J. Singel and M. J. Cloninger, J. Am.
Chem. Soc., 2003, 125, 8820; (c) M. L. Wolfenden and M. J. Cloninger,
J. Am. Chem. Soc., 2005, 127, 12168; (d) F. Chiba, T.-C. Hu, L. J.
Twyman and M. Wagstaff, Chem. Commun., 2008, 4351.
4 (a) S. Mu¨ller and A. D. Schlu¨ter, Chem.–Eur. J., 2005, 11, 5589; (b) S.
M. Grayson and J. M. J Fre´chet, Org. Lett., 2002, 4, 3171; (c) E.
Hollink and E. E. Simanek, Org. Lett., 2008, 8, 2293; (d) C. Ornelas,
R. Pennell, L. F. Liebes and M. Wech, Org. Lett., 2011, 13, 976; (e) A.
Sharma, K. Neibert, K. R. Sharma, R. Hourani and D. Maysinger, et
al., Macromolecules, 2011, 521.
5 For an example a convergent homofunctionalized dendrimer synthesis,
see: C. J. Hawker and J. M. J. Fre´chet, J. Am. Chem. Soc., 1990, 112,
7639.
6 Order of addition, speed of addition, reactant concentration and
temperature had little impact on the ratio of 2 and 3.
7 R. J. Rahaim and J. T. Shaw, J. Org. Chem., 2008, 73, 2912.
8 Compounds
4 and 5 were easily separable. Using 1 : 9 ethyl
Scheme 4 Programmed synthesis of di- and tri- hetero-functionalized
polyvalent compounds. a = 10, PdCl2(PPh3)2 (10 mol%), CuI, (20 mol%),
NEt3, DMF, 25 ◦C 12 h (95% yield); b = CsF, MeCN, 25 ◦C, 14 h (77%
yield); c = 12, PdCl2(PPh3)2 (10 mol%), CuI, (20 mol%), NEt3, DMF, 25 ◦C
14 h (62% yield); d = 11, PdCl2(PPh3)2 (10 mol%), CuI, (20 mol%), NEt3,
DMF, 25 ◦C 12 h (98% yield); e = Bu4NN3, DDQ, PPh3, DCM, 25 ◦C,
1 h (65% yield); f = 14, CuI (20 mol%), DIPEA, 25 ◦C, 8 h (74%); g =
CsF, MeCN, 25 ◦C, 3 h (99% yield); h = 13, PdCl2(PPh3)2 (10 mol%), CuI,
(20 mol%), NEt3, DMF, 25 ◦C, 14 h (52% yield); i = 20% TFA/1% TES,
DCM, 25 ◦C, 1 h.
acetate : hexanes, tri-TMS Rf 0.62; compound 5 Rf 0.55; compound
4 Rf 0.46; starting material 3 Rf 0.33.
9 See the ESI for experimental details†.
10 Orthogonal coupling strategies applied to homofunctional dendrimer
synthesis, see: (a) R. Spindler and J. M. J. Fre´chet, J. Chem. Soc., Perkin
Trans. 1, 1993, 913; (b) F. Zeng and S. C. Zimmerman, J. Am. Chem.
Soc., 1996, 118, 5326.
11 M. Srinivasan, S. Sankararaman, H. Hopf, I. Dix and P. G. Jones, J.
Org. Chem., 2004, 66, 4299.
12 Y. Zou and J. Yin, ChemBioChem, 2008, 9, 2804.
13 Increasing the amount of p-iodobenzyl module, palladium catalyst or
reaction temperature did not significantly change the yield of the second
Sonogashira reaction.
14 N. Iranpoor, H. Firouzabadi, B. Akhlaghinia and N. Nowrouzi,
Tetrahedron Lett., 2004, 45, 3291.
15 Functional group tolerance of the Sonogashira Reaction, see: K.
C. Nicolaou, P. G. Bulger and D. Sarlah, Angew. Chem., Int. Ed.,
2005, 44, 4442. Functional group tolerance of the Huisgen–Sharpless
cycloaddition, see: H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew.
Chem., 2001, 113, 2056.
was performed at room temperature with 20% trifluoroacetic
acid/1% triethylsilane in dichloromethane. The fully deprotected
compounds were then precipitated by the addition of cold diethyl
ether (summarized in Scheme 4). Precipitated products 17 and 18
were obtained as TFA salts in ~95% yield from the t-butyl ester
and Boc-protected precursors. The completeness of deprotection
5058 | Org. Biomol. Chem., 2011, 9, 5056–5058
This journal is
The Royal Society of Chemistry 2011
©