10.1002/anie.201800829
Angewandte Chemie International Edition
COMMUNICATION
d) J. X. Qiao, P. Y. S. Lam, in Boronic Acids, Wiley-VCH Verlag
GmbH & Co. KGaA, 2011, pp. 315-361.
evident. At 25 mol % Cu(OAc)2 a terminal yield of <25% is
observed under otherwise standard conditions due to
unproductive decarboxylation of the nitrophenyl acetate (Figure
4f). A reduction in Cu catalyst could be achieved by simply adding
Zn salts to modulate the rate of substrate decarboxylation. The
use of 25% Cu(OAc)2 in combination with 50% Zn(OAc)2 closely
[8]
[9]
a) P. J. Moon, H. M. Halperin, R. J. Lundgren, Angew. Chem.
Int. Ed. 2016, 55, 1894-1898; b) P. J. Moon, R. J. Lundgren,
Synlett 2017, 28, 515-520.
a) P. J. Moon, S. K. Yin, R. J. Lundgren, J. Am. Chem. Soc.
2016, 138, 13826-13829; b) A. Fahandej-Sadi, R. J. Lundgren,
Synlett 2017, 28, 2886-2890.
mirrored reactions using 75 mol% Cu(OAc)2,
a dramatic
[10] S. R. Waetzig, J. A. Tunge, J. Am. Chem. Soc. 2007, 129,
improvement to reactions conducted with similar Cu(OAc)2
loading in the absence of Zn (Figure 4f).20 In line with the proposal
that acetate is also vital to enable the exchange of metal
carboxylates, the use of Zn(OTf)2 with 25% Cu(OAc)2 provided no
diarylmethane product, as with Zn(OAc)2 alone. Finally, we
reconsidered the established protocols for thermally-driven Pd-
catalyzed decarboxylative benzylation of aryl electrophiles that
proceed only with forcing conditions (140 °C in mesitylene).11
Remarkably, conducting reactions in DMA allowed for smooth
formation of diarylmethane product at room temperature (Figure
4g).
14860-14861.
[11] R. Shang, Z. Huang, L. Chu, Y. Fu, L. Liu, Org. Lett. 2011, 13,
4240-4243.
[12] Z. R. Xu, Q. Wang, J. P. Zhu, Angew. Chem. Int. Ed. 2013, 52,
3272-3276.
[13] S. Mondal, G. Panda, RSC Adv. 2014, 4, 28317-28358.
[14] a) M. Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem. 2010,
6, 24; b) X. B. Mo, J. Yakiwchuk, J. Dansereau, J. A. McCubbin,
D. G. Hall, J. Am. Chem. Soc. 2015, 137, 9694-9703; c) V. D.
Vukovic, E. Richmond, E. Wolf, J. Moran, Angew. Chem. Int. Ed.
2017, 56, 3085-3089.
[15] a) H. Q. Do, E. R. R. Chandrashekar, G. C. Fu, J. Am. Chem.
Soc. 2013, 135, 16288-16291; b) M. Ueda, D. Nakakoji, Y.
Kuwahara, K. Nishimura, I. Ryu, Tetrahedron Lett. 2016, 57,
4142-4144; c) Q. Zhou, K. M. Cobb, T. Y. Tan, M. P. Watson, J.
Am. Chem. Soc. 2016, 138, 12057-12060; d) G. J. Wu, S. Xu,
Y. F. Deng, C. Q. Wu, X. Zhao, W. Z. Ji, Y. Zhang, J. B. Wang,
Tetrahedron 2016, 72, 8022-8030.
In conclusion, a Cu-catalyzed oxidative cross-coupling of
nitrophenyl acetates and sp2-organoboronic esters has been
developed. Diarylmethanes containing a number of potentially
reactive electrophilic groups can be prepared via this method. The
nitro functional group of the benzylic partner can be readily
modified to gain access to a diverse range of arylated products.
Process optimization and mechanistic studies uncovered an
important relationship between reaction solvent and metal cations
with aryl acetate decarboxylation in the context of this and related
sp2–sp3 couplings.
[16] a) J. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345,
433-436; b) W. Zhang, P. H. Chen, G. S. Liu, J. Am. Chem. Soc.
2017, 139, 7709-7712; c) A. Vasilopoulos, S. L. Zultanski, S. S.
Stahl, J. Am. Chem. Soc. 2017, 139, 7705-7708; d) T. E. Storr,
C. J. Teskey, M. F. Greaney, Chem. Eur. J. 2016, 22, 18169-
18178.
[17] Notes: a) Two equiv. of Cu(II) are required per oxidative bond
forming event assuming a Chan-Evans-Lam type mechanism.
b) See the SI for less successful substrates. c) CuSO4•5 H2O:
$18 USD/mol vs Cu(OAc)2 $170/mol, prices from Merck Dec.
20, 2017 for largest available quantity, compare to Pd(OAc)2:
$5000/mol. d) Li, Na, and Cs-nitrophenyl acetates undergo
decarboxylation and arylation under similar conditions. e)
Pivalate can be used instead of acetate, see the SI for details.
f) Batey has reported the Chan-Evans-Lam reaction of
carboxylic acids, we do not observe C–O coupling: F. Huang, T.
D. Quach, R. A. Batey, Org. Lett. 2013, 15, 3150-3153.
Acknowledgements
We thank NSERC Canada (DG and I2I to R.J.L., CGS-D
fellowship to P.J.M, PGS-D fellowship to A.F.S.) for support.
Keywords: cross-coupling • decarboxylation • aerobic catalysis •
boron
[18] L. He, G. Qiu, Y. Gao, J. Wu, Org. Biomol. Chem. 2014, 12,
6965-6971.
[1]
[2]
a) J. Staunton, K. J. Weissman, Nat. Prod. Rep. 2001, 18, 380-
416; b) S. Nakamura, Org. Biomol. Chem. 2014, 12, 394-405.
[19] a) A. E. King, T. C. Brunold, S. S. Stahl, J. Am. Chem. Soc.,
2009, 131, 5044-5045; b) A. E. King, B. L. Ryland, T. C. Brunold,
S. S. Stahl, Organometallics 2012, 31, 7948-7957; c) J. C.
Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules, A. J. B.
Watson, J. Am. Chem. Soc., 2017, 139, 4769-4779.
a) N. Rodriguez, L. J. Goossen, Chem. Soc. Rev. 2011, 40,
5030-5048; b) J. D. Weaver, A. Recio, III, A. J. Grenning, J. A.
Tunge, Chem. Rev. 2011, 111, 1846-1913; c) J. Cornella, I.
Larrosa, Synthesis 2012, 44, 653-676.
[20] Demonstration of a related non-redox co-catalyst effective in C–
C oxidative couplings: D. Wang, S. S. Stahl, J. Am. Chem. Soc.
2017, 139, 5704-5707.
[3]
[4]
a) F. Minisci, A. Citterio, C. Giordano, Acc. Chem. Res. 1983,
16, 27-32; b) H. J. Schäfer, in Comprehensive Organic
Synthesis, Vol. 3 (Eds.: B. M. Trost, I. Fleming), 1991, pp. 633-
658; c) Z. W. Zuo, D. T. Ahneman, L. L. Chu, J. A. Terrett, A. G.
Doyle, D. W. C. MacMillan, Science 2014, 345, 437-440.
a) D. H. R. Barton, B. Garcia, H. Togo, S. Z. Zard, Tetrahedron
Lett. 1986, 27, 1327-1330; b) J. Cornella, J. T. Edwards, T. Qin,
S. Kawamura, J. Wang, C. M. Pan, R. Gianatassio, M. Schmidt,
M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
2174-2177.
[5]
[6]
T. Patra, D. Maiti, Chem. Eur. J. 2017, 23, 7382-7401.
a) C. Liu, H. Zhang, W. Shi, A. W. Lei, Chem. Rev. 2011, 111,
1780-1824; b) C. Liu, D. Liu, A. W. Lei, Acc. Chem. Res. 2014,
47, 3459-3470.
[7]
a) D. M. T. Chan, K. L. Monaco, R. P. Wang, M. P. Winters,
Tetrahedron Lett. 1998, 39, 2933-2936; b) D. A. Evans, J. L.
Katz, T. R. West, Tetrahedron Lett. 1998, 39, 2937-2940; c) P.
Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D.
M. T. Chan, A. Combs, Tetrahedron Lett. 1998, 39, 2941-2944;
This article is protected by copyright. All rights reserved.