Journal of the American Chemical Society
Communication
Chemical Reactions of Relevance to the Chemistry of Natural
Products. Pure Appl. Chem. 1994, 66, 1943−1954.
(7) An article proposing an excited state O−H HAT was recently
published: Nguyen, V. T.; Nguyen, V. D.; Haug, G. C.; Dang, H. T.;
Jin, S.; Li, Z.; Flores-Hansen, C.; Benavides, B. S.; Arman, H. D.;
Larionov, O. V. Alkene Synthesis by Photocatalytic Chemoenzymati-
cally Compatible Dehydrodecarboxylation of Carboxylic Acids and
Biomass. ACS Catal. 2019, 9, 9485−9498.
(3) For recent examples of oxidative decarboxylations, see:
(a) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Decarboxylative sp3
C−N Coupling via Dual Copper and Photoredox Catalysis. Nature
2018, 559, 83−88. (b) Garza-Sanchez, R. A.; Tlahuext-Aca, A.;
Tavakoli, G.; Glorius, F. Visible Light-Mediated Direct Decarbox-
ylative C−H Functionalization of Heteroarenes. ACS Catal. 2017, 7,
4057−4061. (c) Johnston, C. P.; Smith, R. T.; Allmendinger, S.;
MacMillan, D. W. C. Metallaphotoredox-Catalysed sp3−sp3 Cross-
Coupling of Carboxylic Acids with Alkyl Halides. Nature 2016, 536,
322−325. (d) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A.
Hydrodecarboxylation of Carboxylic and Malonic Acid Derivatives
via Organic Photoredox Catalysis: Substrate Scope and Mechanistic
Insight. J. Am. Chem. Soc. 2015, 137, 11340−11348. (e) Zuo, Z.;
Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D.
W. C. Merging Photoredox with Nickel Catalysis: Coupling of α-
Carboxyl sp3-Carbons with Aryl Halides. Science 2014, 345, 437−440.
(f) Liu, X.; Wang, Z.; Cheng, X.; Li, C. Silver-Catalyzed
Decarboxylative Alkynylation of Aliphatic Carboxylic Acids in
Aqueous Solution. J. Am. Chem. Soc. 2012, 134, 14330−14333.
(g) Cui, L.; Chen, H.; Liu, C.; Li, C. Silver-Catalyzed Decarboxylative
Allylation of Aliphatic Carboxylic Acids in Aqueous Solution. Org.
Lett. 2016, 18, 2188−2191. (h) Tan, X.; Song, T.; Wang, Z.; Chen,
H.; Cui, L.; Li, C. Silver-Catalyzed Decarboxylative Bromination of
Aliphatic Carboxylic Acids. Org. Lett. 2017, 19, 1634−1637. (i) Wang,
Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. Silver-Catalyzed
Decarboxylative Chlorination of Aliphatic Carboxylic Acids. J. Am.
Chem. Soc. 2012, 134, 4258−4263. (j) Yin, F.; Wang, Z.; Li, Z.; Li, C.
Silver-Catalyzed Decarboxylative Fluorination of Aliphatic Carboxylic
Acids in Aqueous Solution. J. Am. Chem. Soc. 2012, 134, 10401−
10404. (k) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. Silver-Catalyzed
Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in
Aqueous Solution. J. Am. Chem. Soc. 2015, 137, 9820−9823. (l) Tan,
X.; Liu, Z.; Shen, H.; Zhang, P.; Zhang, Z.; Li, C. Silver-Catalyzed
Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids. J.
Am. Chem. Soc. 2017, 139, 12430−12433.
(8) (a) Schmidt, V. A.; Quinn, R. K.; Brusoe, A. T.; Alexanian, E. J.
Site-Selective Aliphatic C−H Bromination Using N−Bromoamides
and Visible Light. J. Am. Chem. Soc. 2014, 136, 14389−14392.
̈
(b) Quinn, R. K.; Konst, Z. A.; Michalak, S. E.; Schmidt, Y.; Szklarski,
A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C. D.;
Alexanian, E. J. Site-Selective Aliphatic C−H Chlorination Using N−
Chloroamides Enables a Synthesis of Chlorolissoclimide. J. Am. Chem.
Soc. 2016, 138, 696−702. (c) Czaplyski, W. L.; Na, C. G.; Alexanian,
E. J. C−H Xanthylation: A Synthetic Platform for Alkane
Functionalization. J. Am. Chem. Soc. 2016, 138, 13854−13857.
(d) Carestia, A. M.; Ravelli, D.; Alexanian, E. J. Reagent-Dictated Site
Selectivity in Intermolecular Aliphatic C−H Functionalizations Using
Nitrogen-Centered Radicals. Chem. Sci. 2018, 9, 5360−5365.
(9) Tierney, M. M.; Crespi, S.; Ravelli, D.; Alexanian, E. J.
Identifying Amidyl Radicals for Intermolecular C−H Functionaliza-
tions. J. Org. Chem. 2019, 84, 12983−12991.
(10) For examples of decarboxylative xanthylations using the Barton
method, see: (a) Barton, D. H. R.; George, M. V.; Tomoeda, M.
Photochemical Transformations. Part XIII. A New Method for the
Production of Acyl Radicals. J. Chem. Soc. 1962, 1967−1974.
(b) Delduc, P.; Tailhan, C.; Zard, S. Z. A Convenient Source of
Alkyl and Acyl Radicals. J. Chem. Soc., Chem. Commun. 1988, 4, 308.
(c) Jenkins, E. N.; Czaplyski, W. L.; Alexanian, E. J. A General
Approach to Quaternary Center Construction from Couplings of
Unactivated Alkenes and Acyl Xanthates. Org. Lett. 2017, 19, 2350−
2353. (d) Zard, S. Z. The Radical Chemistry of Thiocarbonylthio
Compounds: An Overview. In Handbook of RAFT Polymerization;
Barner-Kowollik, C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2008; pp 151−187.
(11) Rayner, C. M. Synthesis of Thiols, Sulfides, Sulfoxides and
Sulfones. Contemp. Org. Synth. 1995, 2, 409−440.
(4) For recent examples of reductive decarboxylations, see: (a) Zeng,
X.; Yan, W.; Zacate, S. B.; Chao, T.-H.; Sun, X.; Cao, Z.; Bradford, K.
G. E.; Paeth, M.; Tyndall, S. B.; Yang, K.; Kuo, T.-C.; Cheng, M.-J.;
Liu, W. Copper-Catalyzed Decarboxylative Difluoromethylation. J.
Am. Chem. Soc. 2019, 141, 11398−11403. (b) Fu, M.-C.; Shang, R.;
Zhao, B.; Wang, B.; Fu, Y. Photocatalytic Decarboxylative Alkylations
Mediated by Triphenylphosphine and Sodium Iodide. Science 2019,
363, 1429−1434. (c) Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff,
F.; Glorius, F. Visible-Light-Photosensitized Aryl and Alkyl Decar-
boxylative Functionalization Reactions. Angew. Chem., Int. Ed. 2019,
58, 10514−10520. (d) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga,
T.; Myers, E. L.; Aggarwal, V. K. Photoinduced Decarboxylative
Borylation of Carboxylic Acids. Science 2017, 357, 283−286. (e) Li,
C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.;
Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S.
Decarboxylative Borylation. Science 2017, 356, No. eaam7355.
(f) Edwards, J. T.; Merchant, R. R.; McClymont, K. S.; Knouse, K.
W.; Qin, T.; Malins, L. R.; Vokits, B.; Shaw, S. A.; Bao, D.-H.; Wei, F.-
L.; Zhou, T.; Eastgate, M. D.; Baran, P. S. Decarboxylative
Alkenylation. Nature 2017, 545, 213−218. (g) Huihui, K. M. M.;
Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson,
K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J.
Decarboxylative Cross-Electrophile Coupling of N-Hydroxyphthali-
mide Esters with Aryl Iodides. J. Am. Chem. Soc. 2016, 138, 5016−
5019. (h) Pratsch, G.; Lackner, G. L.; Overman, L. E. Constructing
Quaternary Carbons from N-(Acyloxy)Phthalimide Precursors of
Tertiary Radicals Using Visible-Light Photocatalysis. J. Org. Chem.
2015, 80, 6025−6036.
(12) Marson, C. M. New and Unusual Scaffolds in Medicinal
Chemistry. Chem. Soc. Rev. 2011, 40, 5514−5533.
(13) Fawcett, F. S. Bredt’s Rule of Double Bonds in Atomic-Bridged-
Ring Structures. Chem. Rev. 1950, 47, 219−274.
(14) Chiefari, J.; Mayadunne, R. T.; Moad, C. L.; Moad, G.;
Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H.
Thiocarbonylthio Compounds (SC(Z)S-R) in Free Radical Polymer-
ization with Reversible Addition-Fragmentation Chain Transfer
(RAFT Polymerization). Effect of the Activating Group Z. Macro-
molecules 2003, 36, 2273−2283.
(15) Comparative studies indicated that decarboxylative xanthyla-
tions via Barton thiohydroxamate esters were less efficient with simple
aliphatic substrates and ineffective with substrates containing
(16) Poole, L. B. The Basics of Thiols and Cysteines in Redox
Biology and Chemistry. Free Radical Biol. Med. 2015, 80, 148−157.
(17) (a) Quiclet-Sire, B.; Zard, S. Z. Some Aspects of Radical
Chemistry in the Assembly of Complex Molecular Architectures.
Beilstein J. Org. Chem. 2013, 9, 557−576. (b) Quiclet-Sire, B.; Zard, S.
Z. Powerful Carbon−Carbon Bond Forming Reactions Based on a
Novel Radical Exchange Process. Chem. - Eur. J. 2006, 12, 6002−
6016. (c) Quiclet-Sire, B.; Zard, S. Z. Fun with radicals: Some new
perspectives for organic synthesis. Pure Appl. Chem. 2010, 83, 519−
551.
(18) For examples of C−S bond forming decarboxylations, see ref
17c and (a) Wei, L.; Wu, C.; Tung, C.-H.; Wang, W.; Xu, Z.
Decarboxylative Sulfenylation of Amino Acids via Metallaphotoredox
Catalysis. Org. Chem. Front. 2019, 6, 3224−3227. (b) Nyfeler, E.;
Renaud, P. Decarboxylative Radical Azidation Using MPDOC and
MMDOC Esters. Org. Lett. 2008, 10, 985−988. (c) Jin, Y.; Yang, H.;
Fu, H. An N-(Acetoxy)Phthalimide Motif as a Visible-Light pro-
Photosensitizer in Photoredox Decarboxylative Arylthiation. Chem.
(5) Murarka, S. N-(Acyloxy)Phthalimides as Redox-Active Esters in
Cross-Coupling Reactions. Adv. Synth. Catal. 2018, 360, 1735−1753.
(6) Blanksby, S. J.; Ellison, G. B. Bond Dissociation Energies of
Organic Molecules. Acc. Chem. Res. 2003, 36, 255−263.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX